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Communication Systems

Week 1

Introduction to Digital Communications
Channel Capacity
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Contact Information

• Office: Centergy 5138

• Phone: 404 894 2923

• Fax: 404 894 7883

• Email: stuber@ece.gatech.edu (the best way to contact me)

• Web: http://www.ece.gatech.edu/users/stuber/4601

• Office Hours: Wednesdays 2-4pm

• Teaching Intern Office Hours: TBA
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Introduction

Digital communications is the exchange of information using a finite set of signal
waveforms. This is in contrast to analog communication (e.g., AM/FM radio)
which do not use a finite set of signals.

Why use digital communications?

• Natural choice for digital sources, e.g., computer communications.

• Source encoding or data compression techniques can reduce the required

transmission bandwidth with a controlled amount of message distortion.

• Digital signals are more robust to channel impairments than analog signals.

– noise, co-channel and adjacent channel interference, multipath-fading.

– surface defects in recording media such as optical and magnetic disks.

• Higher bandwidth efficiency than analog signals.

• Data encryption and multiplexing is easier.

• Benefit from well known digital signal processing techniques.
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Protocol Stack (3G cdma2000 EV-DO)
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Figure 1.6.6-1. Default Protocols 2
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• This course concentrates on the Physical Layer or PHY Layer.
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• This course concentrates on the digital baseband;
baseband modulation/demodulation.
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Course Objectives

1. Brief review of probability and introduction to random processes.

• message waveforms, physical channels, noise and interference are all ran-
dom processes.

2. Mathematical modelling and characterization of physical communication

channels, signals and noise.

3. Design of digital waveforms and associated receiver structures for recovering
channel-corrupted digital signals.

• emphasis will be on waveform design, receiver processing, and perfor-

mance analysis for “additive white Gaussian noise (AWGN) channels.”

• mathematical foundations are essential for effective physical layer mod-

elling, waveform design, receiver design, etc.

• communication signal processing is a key element of this course. Our

focus will be on the “digital baseband” and not the “analog RF.”
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Basic Digital Communication System
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Some Types of Waveform Channels

• wireline channels, e.g., twisted copper pair, coaxial cable, power line

• fiber optic channels (optical communication is not considered in this course)

• wireless (radio) channels

– line-of-sight (satellite, land microwave radio)

– non-line-of-sight (cellular, wireless LAN, BAN, PAN)

• underwater acoustic channels (submarine communication)

• storage channels, e.g., optical and magnetic disks.

– communication from the present to the future.
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Mathematical Channel Models

Additive White Gaussian Noise Channel (AWGN):

S  (f)n
N  /2o

-W 0 W

+
s(t)

n(t)

r(t) = s(t) + n(t)

Receiver thermal noise can be modeled as spectrally flat or “white.”

Thermal noise power in bandwith W is

No

2
· 2 ·W = NoW Watts

At any time instant t0, the noise waveform n(t0) is a Gaussian random variable
with zero mean and variance NoW , n(t0) ∼ N(0, NoW ).

For a given channel input s(t0), the channel output r(t0) is also a Gaussian
random variable with mean s(t0) and variance NoW , n(t0) ∼ N(s(t0), NoW ).
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Mathematical Channel Models

Linear Filter Channel:

c(t)
s(t)

n(t)

+
*r(t) = s(t)   c(t) + n(t)

An ideal channel has impulse response c(t) = αδ(t− t0) and, therefore,

r(t) = αs(t− to) + n(t)

An ideal channel only attenuates and delays a signal, but otherwise leaves it
undistorted. The channel transfer function is

C(f) = F [c(t)] = αe−j2πfto, |f | < B

where B is the system bandwidth.

• The magnitude response |C(f)| = α is flat in frequency f .

• The phase response 6 C(f) = −2πfto is linear in frequency f .
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Mathematical Channel Models

Two-Ray Multi-path Channel:

Suppose r(t) = αs(t) + βs(t− τ).

Since r(t) = s(t) ∗ c(t), we have c(t) = αδ(t) + βδ(t− τ).

Hence C(f) = α + βe−j2πfτ .

Using |C(f)|2 = C(f)C∗(f), we can obtain

|C(f)| =
√

α2 + β2 + 2αβ cos(2πfτ)

Using the Euler identity, ejθ = cos(θ) + j sin(θ) in C(f) above, we can obtain

6 (C(f) = −Tan−1
β sin(2πfτ)

α+ β cos(2πfτ)
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Mathematical Channel Models

Two-Ray Multi-path Channel:

Suppose α = β = 1. Then

|C(f)| =
√

2 + 2 cos(2πfτ)

6 C(f) = −Tan−1
sin(2πfτ)

1 + cos(2πfτ)
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Observe that the multi-path channel is frequency selective.
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Mathematical Channel Models

Two-Ray Fading Channel:

Suppose we transmit s(t) = cos(2πfot) and the received waveform is

r(t) = α cos(2πfot) + β cos(2π(fo + fd)t), where fd is a “Doppler” shift.

fd = (v/λo) cos(θ), where v is velocity, λo is the carrier wavelength, θ is the
angle of arrival at the receiver. Note that c = foλo, where c is the speed of light.

Using the complex phaser representation of sinusoids, we can write

r(t) = A(t) cos(2πfot+ φ(t))

where

A(t) =
√

α2 + β2 + 2αβ cos(2πfdt)

φ(t) = −Tan−1
β sin(2πfdt)

α + β cos(2πfdt)
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Mathematical Channel Models

Two-Ray Fading Channel:

Suppose α = β = 1. Then

A(t) =
√

2 + 2 cos(2πfdt)

φ(t) = −Tan−1
sin(2πfdt)

1 + cos(2πfdt)
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Observe that the fading channel is time varying.
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Shannon Capacity of a Channel

Claude Shannon in his paper “A Mathematical Theory of Communication”
BSTJ, 1948, proved that every physical channel has a capacity, C, defined as

the maximum possible rate that information can be transmitted over the channel
with an arbitrary reliability.

Arbitrary reliability means that the probability of information bit error or bit
error rate (BER) can be made as small as desired.

Conversely, information cannot be transmitted reliably over a channel at any

rate greater than the channel capacity, C. The BER will be bounded from zero.

The channel capacity depends on the channel impulse response or channel trans-
fer function, and the received bit energy-to-noise ratio (Eb/No).

Arbitrary reliability can be realized in practice by using error control coding
techniques.
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Coding Channel and Capacity

The channel capacity depends only on the coding channel, defined as the portion
of the communication system that is “seen” by the coding system.

The input to the coding channel is the output of the channel encoder.

The output of the coding channel is the input to the channel decoder.

In practice, the coding channel inputs are often chosen from a digital modula-

tion alphabet, while the coding channel outputs are continuous valued decision

variables generated by sampling the corresponding matched filter outputs in the
receiver.

Encoder


Decoder


Coding

Channel


0 c©2013, Georgia Institute of Technology (lect1 16)



✬

✫

✩

✪

AWGN Channel Capacity

S  (f)n
N  /2o

-W 0 W

+
s(t)

n(t)

r(t) = s(t) + n(t)

For the AWGN channel, the capacity is

C = W log2

(

1 +
P

NoW

)

W = channel bandwidth (Hz)

P = constrained input signal power (watts)

No = one-sided noise power spectral density (watts/Hz)

No/2 = two-sided noise power spectral density (watts/Hz)
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Capacity of the AWGN Channel

Dividing both sides by W

C

W
= log2

(

1 +
P

NoW

)

= log2

(

1 +
Eb

No
·
R

W

)

R = 1/T = data rate (bits/second)

Eb = energy per data bit (Joules) = PT

Eb/No = received bit energy-to-noise spectral density ratio (dimensionless)

R/W = bandwidth efficiency (bits/s/Hz)

If R = C, i.e., we transmit at a rate equal to the channel capacity, then

C

W
= log2

(

1 +
Eb

No
·
C

W

)

or inverting this equation we get Eb/No in terms of C, viz.

Eb

No
=

2C/W − 1

C/W
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AWGN Channel Capacity
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Capacity of the AWGN Channel

Example: Suppose that W = 6 MHz (TV channel bandwidth) and the received

SNR
∆
= P/(NoW ) = 20 dB. What is the channel capacity?

Answer: C = 6 × 106log2 (1 + 100) = 40 Mbps. It is impossible to transmit

information reliably on this channel with a rate greater than 40 Mbps.

Asymptotic behavior: as C/W → 0.

Using L’Hôpital’s rule

limC/W→0

Eb

No
= limC/W→0 2

C/W ln 2

= ln 2

= 0.693

= −1.6dB

Conclusion: It is impossible to communicate on an AWGN channel with arbitrary
reliability if Eb/No < −1.6 dB, regardless of how much bandwidth we use.
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AWGN Channel Capacity

Power Efficient Region: R/W < 1 bits/s/Hz. In this region we have band-
width resources available, but transmit power is limited, e.g., deep space com-

munications.

Bandwidth Efficient Region: R/W > 1 bits/s/Hz. In this region we have

power resources available, but bandwidth is limited, e.g., commercial wireless
communications. Note: we still want to use power efficiently, i.e., bandwidth

and power efficient communication

Observe that most uncoded modulation schemes operate about 10 dB from the
Shannon capacity limit for an error rate of 10−5.

State-of-the-art “turbo” coding schemes can close this gap to less than 1 dB,
with the cost of additional receiver processing complexity and delay.

Generally, we can tradeoff power, bandwidth, processing complexity, delay.
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What is SNR?

OFDM/OFDMA

CDMA, etc..
Gray/SP –

QAM, PSK

BLOCK, CONV,
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Time/
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chip SNR

Er/No

codebit SNR

Eb = energy per information bit

Er = energy per code bit

E energy per modulated symbolEs = energy per modulated symbol

Ec = energy per spreading chip

The term signal-to-noise ratio (SNR) used by itself is vague:
It could mean Bit-SNR, Code-bit-SNR, Symbol-SNR, Chip-SNR.

We always need to compare different systems on the basis of received

Bit-SNR, Eb/No.
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