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✬

✫

✩

✪

M-ary PAM

With M -ary Pulse Amplitude Modulation, information is transmitted in the car-
rier amplitude, such that the amplitude takes on one of M possible values.

During any baud interval, the transmitted waveform is

sm(t) =

√

√

√

√

2E0

T
am cos(2πfct), 0 ≤ t ≤ T

where
am ∈ {±1,±3,±5,±(M − 1)}

and E0 is the energy of the signal with the lowest amplitude, i.e., when am = ±1.

Usually, M = 2k for some k, i.e., M = 2, 4, 8, 16, etc.

During each baud interval of length T , k = log2M bits are transmitted.

The baud rate R = 1/T and the bit rate is Rb = kR.
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✬

✫

✩

✪

M-ary PAM

M -ary PAM signals can be expressed in terms of signal vectors. Since all the M
signals are linearly dependent, there is only one basis function.

f1(t) =

√

√

√

√

2

T
cos(2πfct) , 0 ≤ t ≤ T

Then
sm(t) = am

√
E0f1(t)

Hence, the signal-space diagram for M -ary PAM is shown below.
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✬

✫

✩

✪

M-ary QAM

Quadrature Amplitude Modulation (QAM) signals can be thought of a indepen-
dent PAM on the inphase (cosine) and quadrature (sine) carrier components.

During any baud interval the transmitted waveform is

sm(t) =

√

√

√

√

2E0

T

(

acm cos(2πfct)− asm sin(2πfct)

)

, 0 ≤ t ≤ T

where

a{c,s}m ∈ {±1,±3,±5,±(M − 1)}
and 2E0 is the energy of the signal with the lowest amplitude,
i.e., when acm, a

s
m = ±1.
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✬

✫

✩

✪

M-ary QAM

QAM signals can be expressed in terms of signal vectors. Since the functions
cos 2πfct and sin 2πfct, with fcT ≫ 1, are orthogonal over the interval (0, T ), we

have two basis functions

f1(t) =

√

√

√

√

2

T
cos 2πfct, 0 ≤ t ≤ T

f2(t) = −
√

√

√

√

2

T
sin 2πfct, 0 ≤ t ≤ T

Then

sm(t) = acm
√
E0f1(t) + asm

√
E0f2(t), m = 1, . . . ,M, 0 ≤ t ≤ T

Hence

sm(t) ↔ sm =
√
E0

(

acm, a
s
m

)
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✬

✫

✩

✪

M-ary QAM

For the case when M = 2k, k even, the resulting signal space diagram has a
“square constellation.” In this case the QAM signal can be thought of as 2 PAM

signals in quarature. For M = 2k, k odd, the constellation takes on a “cross”
form. For example, 16-QAM constellation is

0000 0001 0011 0010

0110011101010100

1100 1101 1111 1110

1010101110011000
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✬

✫

✩

✪

M-ary PSK

Phase shift keyed (PSK) signals transmit information in the carrier phase. Dur-
ing any baud interval, the transmitted waveform is

sm(t) =

√

√

√

√

2E

T
cos (2πfct+ θk) , 0 ≤ t ≤ T

where

θk ∈






2π
(m− 1)

M
, m = 1, . . . ,M







We can rewrite this in the form

sm(t) =

√

√

√

√

2E

T

(

cos θm cos 2πfct− sin θm sin 2πfct

)

, m = 1, . . . ,M

Using the same basis functions as QAM, we have

sm(t) ↔ sm =
√
E0

(

cos θm, sin θm

)
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✬

✫

✩

✪

8-PSK Constellation
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✬

✫

✩

✪

M-ary FSK

For Frequency shift keyed (FSK) signals, the transmitted signal during any given
baud interval is

sm(t) = A cos (2πfct+ 2πfmt) , 0 ≤ t ≤ T

where
fm = (m− 1)∆f , m = 1, . . . ,M

We have seen before that the choice ∆f = 1
2T gives waveforms that are orthogonal.

E

E

E

f  (t)

f  (t)

f  (t)

2

1

3

M = 3
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✬

✫

✩

✪

QAM Signals

Consider QAM signals defined on the interval 0 ≤ t ≤ T :

sm(t) =

√

√

√

√

2E0

T
(acm cos (2πfct)− asm sin (2πfct)) acm, a

s
m ∈ {±1,±3}

The appropriate basis functions for the signal space are

f1(t) =

√

√

√

√

2

T
cos (2πfct) f2(t) = −

√

√

√

√

2

T
sin (2πfct)

Then

sm(t) =
√
E0a

c
mf1(t) +

√
E0a

s
mf2(t)

sm =
√
E0(a

c
m, a

s
m)

We randomly choose one of the 16 signals to transmit over an AWGN channel
and receive r = sm+n, where n = (n1, n2), and the ni are i.i.d. Gaussian random
variables with variance σ2 = No/2.

Our task is to find the probability of symbol error with minimum distance (or
maximum likelihood) decisions.
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✬

✫

✩

✪

QAM Signals

To calculate the probability of symbol error, we first must define appropriate
decision regions by placing decision boundaries between the signal points. For

16-QAM this is shown below.
Note that a =

√
E0 in the figure.

decision
boundaries

decision
regions

3a

a

-a

-3a

-3a -a a 3a

s s s s

s s s s

s s s s

s s s s

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 c©2011, Georgia Institute of Technology (lect9 3)



✬

✫

✩

✪

QAM Signals

For problems of this type, and especially for one or two-dimensional signal spaces
(this problem is 2-D), it is often easier to calculate the probability of correct re-

ception.

For this problem there are 3 cases to consider, since we can observe graphically

that

PC|s5 = PC|s6 = PC|s9 = PC|s10
PC|s0 = PC|s3 = PC|s12 = PC|s15
PC|s1 = PC|s2 = PC|s4 = PC|s7 = PC|s8 = PC|s11 = PC|s13 = PC|s14

All these quantities can be expressed in terms of the parameter

Q ≡ Q





√
E0

σ



 σ2 =
No

2
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✬

✫

✩

✪

QAM Signals

All these quantities can be expressed in terms of the parameter

Q ≡ Q





√
E0

σ



 σ2 =
No

2

We have

PC|s5 = (1− 2Q)2 = 1− 4Q+ 4Q2

PC|s0 = (1−Q)2 = 1− 2Q+Q2

PC|s1 = (1−Q) (1− 2Q) = 1− 3Q+ 2Q2

Then

PC =
1

4
PC|s5 +

1

4
PC|s0 +

1

2
PC|s1

= 1− 3Q+
9

4
Q2

Finally, the probability of error is Pe = 1− PC = 3Q− 9
4
Q2
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✬

✫

✩

✪

QAM Signals

Next, we need to find the average symbol energy. Remember that the energy in
a symbol is equal to squared length of the signal vector.

In this case,

Eav =
1

4
(E0 + E0) +

1

4
(9E0 + 9E0) +

1

2
(E0 + 9E0) = 10E0

Hence, E0 = Eav/10, and

Q = Q





√
E0

σ



 = Q





√

√

√

√

2E0

No



 = Q





√

√

√

√

Eav

5No





Finally,

Pe = 3Q





√

√

√

√

Eav

5No



− 9

4
Q2





√

√

√

√

Eav

5No





where
Eav

No
= average symbol energy-to-noise ratio
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✬

✫

✩

✪

QAM Signals

What about the bit error probability? That depends on the mapping of bits to
symbols.

With Gray coding, a symbol error will usually result in one bit error. Certainly
at most 4 bits errors will occur. Hence,

Pe

4

<≈ Pb < Pe

Also, there are 4 bits per modulated symbol so that the average bit energy-to-
noise ratio is

Eb av = Eav/4

So we can write

Pb
>≈ 3

4
Q





√

√

√

√

4

5

Eb av

No



− 9

16
Q2





√

√

√

√

4

5

Eb av

No




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✬

✫

✩

✪

Binary Error Probability

Consider two signal vectors s1 and s2.

The received signal vector is
r = si + n

A coherent maximum likelihood or minimum distance receiver decides in favor

of the signal point s1 or s2 that is closest in Euclidean distance to the received
signal point r.

The error probability between s1 and s2 is

P (s1, s2) = Q







√

√

√

√

d212
2No







where d212 = ‖s1 − s2‖2 is the squared Euclidean distance between s1 and s2.
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✬

✫

✩

✪

Error Probability and Euclidean Distance

The error probability depends on the Euclidean distance between the signal vec-

tors.

If we have two signal vectors s1 and s2, separated by Euclidean distance d12 =
‖s1 − s2‖, then the error probability is

Pe = Q







√

√

√

√

d212
2No







For BPSK d12 = 2
√
E

For BFSK d12 =
√
2E
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✬

✫

✩

✪

Voronoi Regions

Now suppose that we have a collection of M signal vectors, s1, s2, . . . , sM .
The maximum likelihood receiver observes the received vector r and decides

in favour of the signal vector that is closest in Euclidean distance (or squared
Euclidean distance) to r. That is

ŝ = argminsi‖r− si‖2

The received signal vector lies in the N -dimensional Euclidean space RN . Sup-
pose that we form M partitions of RN in the following fashion

Ri = {r : ‖r− si‖ = min
j

‖r− sj‖}

The Ri, i = 1, . . . ,M are called Voronoi regions.

The maximum likelihood decision can be put in the form

ŝ = si whenever r ∈ Ri
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✬

✫

✩

✪

Error Probability

Under the assumption of equally likely transmitted symbols, the symbol error
probability can be written as

PM = 1− PC = 1− 1

M

M
∑

j=1

PC|sj

where PC|sj is the probability of a correct decision when sj is sent.

The computation of PM requires the set of probabilities {PC|sj}Mj=1.

However, a correct decision on sj occurs if and only if the noise vector n does
not move the received vector r = sj + n outside the Voronoi region Rj, i.e.,

PC|sj = P{r ∈ Rj}

Using the conditional density function p(r|sj), we have

PC|sj =
∫

Rj

1

(πNo)N/2
e−‖r−sj‖2/No
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✬

✫

✩

✪

Union Bound

In general, the Voronoi regions are very hard to determine so the integral

PC|sj =
∫

Rj

1

(πNo)N/2
e−‖r−sj‖2/No

is very difficult if not impossible to compute, since we need to determine the up-
per and lower limits on an N -fold integral for a often complicated convex region

in an N -dimensional space. In this case, upper and lower bounding techniques
are useful.

Suppose we wish to compute PC|sk .

Consider only the pair of signals sk and sj. Let sk be sent and let Ej denote
the event that the receiver choose sj, hence making an error. Note that

P (Ej) = P (sk, sj)
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✬

✫

✩

✪

Union Bound

The probability of symbol error for sk is

PE|sk = P





⋃

j 6=k

Ej





The union bound on PE|sk is

P





⋃

j 6=k

Ej



 ≤ ∑

j 6=k

P (Ej)

Hence,

PE|sk ≤
∑

j 6=k

P (sk, sj)

If the si are equally likely, then

PM =
1

M

M
∑

k=1

PE|sk ≤
1

M

M
∑

k=1

∑

j 6=k

P (sk, sj)
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✬

✫

✩

✪

Union Bound

We have seen earlier that

P (sk, sj) = Q









√

√

√

√

√

d2kj
2No









where d2kj = ‖sk − sj‖2.

Note that Q(x) decreases with x. Hence, a further upper bound can be obtained

by using the minimum distance dmin = minj,k dkj and noting that

P (sk, sj) = Q









√

√

√

√

√

d2kj
2No









≤ Q







√

√

√

√

d2min

2No







Hence,

PM ≤ (M − 1)Q







√

√

√

√

d2min

2No






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✬

✫

✩

✪

Signal Set Rotation

The probability of symbol error is invariant to any rotation of the signal constel-
lation {si}Mi=1 about the origin of the signal space. This is a consequence of two

properties.

First, the probability of symbol error depends solely on the set of Euclidean

distances {djk}, j 6= k between the signal vectors in the signal constellation.

Second, the AWGN is circularly symmetric in all directions of the signal space.

A signal constellation can be rotated about the origin of the signal space, by
multiplying each N -dimensional signal vector by an N ×N unitary matrix Q. A

unitary matrix has the property QQT = QTQ = I, where QT is the transpose
of Q, and I is the N ×N identity matrix.
The rotated signal vectors are equal to

ŝi = siQ, i = 1, . . . ,M .
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✬

✫

✩

✪

Signal Set Rotation

Correspondingly, the noise vector n is replaced with its rotated version

n̂ = nQ .

The rotated noise vector n̂ is a vector of complex Gaussian random variables

that is completely described by its mean and covariance matrix. The mean is

E[n̂] = E[n]Q = 0 .

The covariance matrix is

Λn̂n̂ = E[n̂T n̂]

= E[(nQ)TnQ]

= E[QTnTnQ]

= QTE[nTn]Q

=
No

2
QTQ =

No

2
I .
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✬

✫

✩

✪

Signal Set Translation

Next consider a translation of the signal set such that

ŝi = si − a, i = 1, . . . ,M ,

where a is a constant vector. In this case, the error probability remains the same

since d̂jk = d̃jk, j 6= k. However, the average energy in the signal constellation is
altered by the translation and becomes

Êav =
M
∑

i=1

‖ŝi‖2Pi

=
M
∑

i=1

‖si − a‖2Pi

=
M
∑

i=1

{

‖si‖2 − 2si · a+ ‖a‖2
}

Pi

=
M
∑

i=1

‖si‖2Pi − 2





M
∑

i=1

siPi



 · a+ ‖a‖2
M
∑

i=1

Pi

= Eav − 2 {E[ s ] · a}+ ‖a‖2 (1)
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✬

✫

✩

✪

Signal Set Translation

where Eav is the average energy of the original signal constellation and E[ s ] =
∑M−1

i=0 siPi is its centroid (or center of mass).

Differentiating (1) with respect to the vector a and setting the result equal to
zero will yield the translation that minimizes the average energy in the translated

signal constellation. This gives

aopt = E[ s̃ ] .

Note that the center of mass of the translated signal constellation is at the origin,

and the minimum average energy in the translated signal constellation is

Êmin = Eav − ‖aopt‖2 .
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