EE4601 Communication Systems

Week 11

Non-Binary Signal Sets

QAM Error Probability

Error Probably Bounds

Rotations and Translations

M-ary PAM

With M-ary Pulse Amplitude Modulation, information is transmitted in the carrier amplitude, such that the amplitude takes on one of M possible values.

During any baud interval, the transmitted waveform is

$$s_m(t) = \sqrt{\frac{2E_0}{T}} a_m \cos(2\pi f_c t), \ 0 \le t \le T$$

where

$$a_m \in \{\pm 1, \pm 3, \pm 5, \pm (M-1)\}$$

and E_0 is the energy of the signal with the lowest amplitude, i.e., when $a_m = \pm 1$.

Usually, $M = 2^k$ for some k, i.e., M = 2, 4, 8, 16, etc.

During each baud interval of length T, $k = \log_2 M$ bits are transmitted.

The baud rate R = 1/T and the bit rate is $R_b = kR$.

⁰©2011, Georgia Institute of Technology (lect8_11)

M-ary PAM

M-ary PAM signals can be expressed in terms of signal vectors. Since all the M signals are linearly dependent, there is only one basis function.

$$f_1(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_c t)$$
 , $0 \le t \le T$

Then

$$s_m(t) = a_m \sqrt{E_0} f_1(t)$$

Hence, the signal-space diagram for M-ary PAM is shown below.

⁰©2011, Georgia Institute of Technology (lect8_12)

M-ary QAM

Quadrature Amplitude Modulation (QAM) signals can be thought of a independent PAM on the inphase (cosine) and quadrature (sine) carrier components. During any baud interval the transmitted waveform is

$$s_m(t) = \sqrt{\frac{2E_0}{T}} \left(a_m^c \cos(2\pi f_c t) - a_m^s \sin(2\pi f_c t) \right), \ 0 \le t \le T$$

where

$$a_m^{\{c,s\}} \in \{\pm 1, \pm 3, \pm 5, \pm (M-1)\}$$

and $2E_0$ is the energy of the signal with the lowest amplitude, i.e., when $a_m^c, a_m^s = \pm 1$.

⁰©2011, Georgia Institute of Technology (lect8_13)

M-ary QAM

QAM signals can be expressed in terms of signal vectors. Since the functions $\cos 2\pi f_c t$ and $\sin 2\pi f_c t$, with $f_c T \gg 1$, are orthogonal over the interval (0, T), we have two basis functions

$$f_1(t) = \sqrt{\frac{2}{T}}\cos 2\pi f_c t, \ 0 \le t \le T$$

$$f_2(t) = -\sqrt{\frac{2}{T}}\sin 2\pi f_c t, \ 0 \le t \le T$$

Then

$$s_m(t) = a_m^c \sqrt{E_0} f_1(t) + a_m^s \sqrt{E_0} f_2(t), \quad m = 1, \dots, M, \quad 0 \le t \le T$$

Hence

$$s_m(t) \leftrightarrow \mathbf{s_m} = \sqrt{E_0} \left(a_m^c, a_m^s \right)$$

⁰©2011, Georgia Institute of Technology (lect8_14)

M-ary QAM

For the case when $M=2^k$, k even, the resulting signal space diagram has a "square constellation." In this case the QAM signal can be thought of as 2 PAM signals in quarature. For $M=2^k$, k odd, the constellation takes on a "cross" form. For example, 16-QAM constellation is

0000	0001	0011	0010	
0100 •	0101 •	0111 •	0110 •	
1100 •	1101 •	11111 •	1110	_
1000	1001 •	1011 •	1010 •	

⁰©2011, Georgia Institute of Technology (lect8_15)

M-ary PSK

Phase shift keyed (PSK) signals transmit information in the carrier phase. During any baud interval, the transmitted waveform is

$$s_m(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_c t + \theta_k)$$
 , $0 \le t \le T$

where

$$\theta_k \in \left\{ 2\pi \frac{(m-1)}{M}, \quad m = 1, \dots, M \right\}$$

We can rewrite this in the form

$$s_m(t) = \sqrt{\frac{2E}{T}} \left(\cos \theta_m \cos 2\pi f_c t - \sin \theta_m \sin 2\pi f_c t \right) , m = 1, \dots, M$$

Using the same basis functions as QAM, we have

$$s_m(t) \leftrightarrow \mathbf{s_m} = \sqrt{E_0} \left(\cos \theta_m, \sin \theta_m \right)$$

⁰©2011, Georgia Institute of Technology (lect8_16)

8-PSK Constellation

 $^{^0 \}ensuremath{\overline{\odot}} 2011,$ Georgia Institute of Technology (lect
8_17)

M-ary FSK

For Frequency shift keyed (FSK) signals, the transmitted signal during any given baud interval is

$$s_m(t) = A\cos\left(2\pi f_c t + 2\pi f_m t\right), \ 0 \le t \le T$$

where

$$f_m = (m-1)\Delta_f, \quad m = 1, \dots, M$$

We have seen before that the choice $\Delta_f = \frac{1}{2T}$ gives waveforms that are orthogonal.

Consider QAM signals defined on the interval $0 \le t \le T$:

$$s_m(t) = \sqrt{\frac{2E_0}{T}} \left(a_m^c \cos(2\pi f_c t) - a_m^s \sin(2\pi f_c t) \right) \qquad a_m^c, a_m^s \in \{\pm 1, \pm 3\}$$

The appropriate basis functions for the signal space are

$$f_1(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_c t)$$
 $f_2(t) = -\sqrt{\frac{2}{T}}\sin(2\pi f_c t)$

Then

$$s_m(t) = \sqrt{E_0} a_m^c f_1(t) + \sqrt{E_0} a_m^s f_2(t)$$

 $\mathbf{s}_m = \sqrt{E_0} (a_m^c, a_m^s)$

We randomly choose one of the 16 signals to transmit over an AWGN channel and receive $\mathbf{r} = \mathbf{s_m} + \mathbf{n}$, where $\mathbf{n} = (n_1, n_2)$, and the n_i are i.i.d. Gaussian random variables with variance $\sigma^2 = N_o/2$.

Our task is to find the probability of symbol error with minimum distance (or maximum likelihood) decisions.

⁰©2011, Georgia Institute of Technology (lect9_2)

To calculate the probability of symbol error, we first must define appropriate $decision\ regions$ by placing $decision\ boundaries$ between the signal points. For 16-QAM this is shown below.

Note that $a = \sqrt{E_0}$ in the figure.

 $^{^0 @ 2011,}$ Georgia Institute of Technology (lect9_3)

For problems of this type, and especially for one or two-dimensional signal spaces (this problem is 2-D), it is often easier to calculate the probability of correct reception.

For this problem there are 3 cases to consider, since we can observe graphically that

$$P_{C|\mathbf{s}_{5}} = P_{C|\mathbf{s}_{6}} = P_{C|\mathbf{s}_{9}} = P_{C|\mathbf{s}_{10}}$$

$$P_{C|\mathbf{s}_{0}} = P_{C|\mathbf{s}_{3}} = P_{C|\mathbf{s}_{12}} = P_{C|\mathbf{s}_{15}}$$

$$P_{C|\mathbf{s}_{1}} = P_{C|\mathbf{s}_{2}} = P_{C|\mathbf{s}_{4}} = P_{C|\mathbf{s}_{7}} = P_{C|\mathbf{s}_{8}} = P_{C|\mathbf{s}_{11}} = P_{C|\mathbf{s}_{13}} = P_{C|\mathbf{s}_{14}}$$

All these quantities can be expressed in terms of the parameter

$$Q \equiv Q \left(\frac{\sqrt{E_0}}{\sigma} \right) \qquad \sigma^2 = \frac{N_o}{2}$$

⁰©2011, Georgia Institute of Technology (lect9_4)

All these quantities can be expressed in terms of the parameter

$$Q \equiv Q \left(\frac{\sqrt{E_0}}{\sigma} \right) \qquad \sigma^2 = \frac{N_o}{2}$$

We have

$$P_{C|\mathbf{s}_5} = (1 - 2Q)^2 = 1 - 4Q + 4Q^2$$

 $P_{C|\mathbf{s}_0} = (1 - Q)^2 = 1 - 2Q + Q^2$
 $P_{C|\mathbf{s}_1} = (1 - Q)(1 - 2Q) = 1 - 3Q + 2Q^2$

Then

$$P_{C} = \frac{1}{4} P_{C|\mathbf{s}_{5}} + \frac{1}{4} P_{C|\mathbf{s}_{0}} + \frac{1}{2} P_{C|\mathbf{s}_{1}}$$
$$= 1 - 3Q + \frac{9}{4} Q^{2}$$

Finally, the probability of error is $P_e = 1 - P_C = 3Q - \frac{9}{4}Q^2$

⁰©2011, Georgia Institute of Technology (lect9_5)

Next, we need to find the *average* symbol energy. Remember that the energy in a symbol is equal to squared length of the signal vector.

In this case,

$$E_{\text{av}} = \frac{1}{4}(E_0 + E_0) + \frac{1}{4}(9E_0 + 9E_0) + \frac{1}{2}(E_0 + 9E_0) = 10E_0$$

Hence, $E_0 = E_{av}/10$, and

$$Q = Q\left(\frac{\sqrt{E_0}}{\sigma}\right) = Q\left(\sqrt{\frac{2E_0}{N_o}}\right) = Q\left(\sqrt{\frac{E_{\rm av}}{5N_o}}\right)$$

Finally,

$$P_e = 3Q\left(\sqrt{\frac{E_{\rm av}}{5N_o}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{E_{\rm av}}{5N_o}}\right)$$

where

 $\frac{E_{\text{av}}}{N_o}$ = average symbol energy-to-noise ratio

⁰©2011, Georgia Institute of Technology (lect9_6)

What about the bit error probability? That depends on the mapping of bits to symbols.

With Gray coding, a symbol error will usually result in one bit error. Certainly at most 4 bits errors will occur. Hence,

$$\frac{P_e}{4} \stackrel{<}{\approx} P_b < P_e$$

Also, there are 4 bits per modulated symbol so that the average bit energy-tonoise ratio is

$$E_{b \text{ av}} = E_{av}/4$$

So we can write

$$P_b \stackrel{\geq}{\approx} \frac{3}{4} Q \left(\sqrt{\frac{4}{5} \frac{E_{b \text{ av}}}{N_o}} \right) - \frac{9}{16} Q^2 \left(\sqrt{\frac{4}{5} \frac{E_{b \text{ av}}}{N_o}} \right)$$

Binary Error Probability

Consider two signal vectors \mathbf{s}_1 and \mathbf{s}_2 .

The received signal vector is

$$r = s_i + n$$

A coherent maximum likelihood or minimum distance receiver decides in favor of the signal point \mathbf{s}_1 or \mathbf{s}_2 that is closest in Euclidean distance to the received signal point \mathbf{r} .

The error probability between \mathbf{s}_1 and \mathbf{s}_2 is

$$P(\mathbf{s}_1, \mathbf{s}_2) = Q\left(\sqrt{\frac{d_{12}^2}{2N_o}}\right)$$

where $d_{12}^2 = \|\mathbf{s}_1 - \mathbf{s}_2\|^2$ is the squared Euclidean distance between \mathbf{s}_1 and \mathbf{s}_2 .

⁰©2011, Georgia Institute of Technology (lect9_8)

Error Probability and Euclidean Distance

The error probability depends on the *Euclidean distance* between the signal vectors.

If we have two signal vectors \mathbf{s}_1 and \mathbf{s}_2 , separated by Euclidean distance $d_{12} = \|\mathbf{s}_1 - \mathbf{s}_2\|$, then the error probability is

$$P_e = Q\left(\sqrt{\frac{d_{12}^2}{2N_o}}\right)$$

For BPSK $d_{12} = 2\sqrt{E}$ For BFSK $d_{12} = \sqrt{2E}$

⁰©2011, Georgia Institute of Technology (lect9_9)

Voronoi Regions

Now suppose that we have a collection of M signal vectors, $\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_M$. The maximum likelihood receiver observes the received vector \mathbf{r} and decides in favour of the signal vector that is closest in Euclidean distance (or squared Euclidean distance) to \mathbf{r} . That is

$$\hat{\mathbf{s}} = \operatorname{argmin}_{\mathbf{s}_i} \|\mathbf{r} - \mathbf{s}_i\|^2$$

The received signal vector lies in the N-dimensional Euclidean space \mathbf{R}^N . Suppose that we form M partitions of \mathbf{R}^N in the following fashion

$$R_i = \{\mathbf{r} : \|\mathbf{r} - \mathbf{s}_i\| = \min_j \|\mathbf{r} - \mathbf{s}_j\|\}$$

The $R_i, i = 1, ..., M$ are called *Voronoi* regions.

The maximum likelihood decision can be put in the form

$$\hat{\mathbf{s}} = \mathbf{s}_i$$
 whenever $\mathbf{r} \in R_i$

⁰©2011, Georgia Institute of Technology (lect9_10)

Error Probability

Under the assumption of equally likely transmitted symbols, the symbol error probability can be written as

$$P_M = 1 - P_C = 1 - \frac{1}{M} \sum_{i=1}^{M} P_{C|\mathbf{s_j}}$$

where $P_{C|\mathbf{s}_i}$ is the probability of a correct decision when \mathbf{s}_j is sent.

The computation of P_M requires the set of probabilities $\{P_{C|\mathbf{s_j}}\}_{j=1}^M$.

However, a correct decision on \mathbf{s}_j occurs if and only if the noise vector \mathbf{n} does not move the received vector $\mathbf{r} = \mathbf{s}_j + \mathbf{n}$ outside the Voronoi region R_j , i.e.,

$$P_{C|\mathbf{s_j}} = P\{\mathbf{r} \in R_j\}$$

Using the conditional density function $p(\mathbf{r}|\mathbf{s}_i)$, we have

$$P_{C|\mathbf{s_j}} = \int_{R_j} \frac{1}{(\pi N_o)^{N/2}} e^{-\|\mathbf{r} - \mathbf{s_j}\|^2 / N_o}$$

⁰©2011, Georgia Institute of Technology (lect9_11)

Union Bound

In general, the Voronoi regions are very hard to determine so the integral

$$P_{C|\mathbf{s_j}} = \int_{R_j} \frac{1}{(\pi N_o)^{N/2}} e^{-\|\mathbf{r} - \mathbf{s_j}\|^2 / N_o}$$

is very difficult if not impossible to compute, since we need to determine the upper and lower limits on an N-fold integral for a often complicated convex region in an N-dimensional space. In this case, upper and lower bounding techniques are useful.

Suppose we wish to compute $P_{C|\mathbf{s}_k}$.

Consider only the pair of signals \mathbf{s}_k and \mathbf{s}_j . Let \mathbf{s}_k be sent and let E_j denote the event that the receiver choose \mathbf{s}_j , hence making an error. Note that

$$P(E_j) = P(\mathbf{s}_k, \mathbf{s}_j)$$

⁰©2011, Georgia Institute of Technology (lect9_12)

Union Bound

The probability of symbol error for \mathbf{s}_k is

$$P_{E|\mathbf{s}_k} = P\left(\bigcup_{j \neq k} E_j\right)$$

The union bound on $P_{E|\mathbf{s}_k}$ is

$$P\left(\bigcup_{j\neq k} E_j\right) \leq \sum_{j\neq k} P(E_j)$$

Hence,

$$P_{E|\mathbf{s}_k} \leq \sum_{j \neq k} P(\mathbf{s}_k, \mathbf{s}_j)$$

If the \mathbf{s}_i are equally likely, then

$$P_M = \frac{1}{M} \sum_{k=1}^{M} P_{E|\mathbf{s}_k} \le \frac{1}{M} \sum_{k=1}^{M} \sum_{j \neq k} P(\mathbf{s}_k, \mathbf{s}_j)$$

⁰©2011, Georgia Institute of Technology (lect9_13)

Union Bound

We have seen earlier that

$$P(\mathbf{s}_k, \mathbf{s}_j) = Q\left(\sqrt{\frac{d_{kj}^2}{2N_o}}\right)$$

where $d_{kj}^2 = ||\mathbf{s}_k - \mathbf{s}_j||^2$.

Note that Q(x) decreases with x. Hence, a further upper bound can be obtained by using the minimum distance $d_{\min} = \min_{j,k} d_{kj}$ and noting that

$$P(\mathbf{s}_k, \mathbf{s}_j) = Q\left(\sqrt{\frac{d_{kj}^2}{2N_o}}\right) \le Q\left(\sqrt{\frac{d_{\min}^2}{2N_o}}\right)$$

Hence,

$$P_M \le (M-1)Q\left(\sqrt{\frac{d_{\min}^2}{2N_o}}\right)$$

⁰©2011, Georgia Institute of Technology (lect9_14)

Signal Set Rotation

The probability of symbol error is invariant to any rotation of the signal constellation $\{\mathbf{s}_i\}_{i=1}^M$ about the origin of the signal space. This is a consequence of two properties.

First, the probability of symbol error depends solely on the set of Euclidean distances $\{d_{jk}\}, j \neq k$ between the signal vectors in the signal constellation.

Second, the AWGN is circularly symmetric in all directions of the signal space.

A signal constellation can be rotated about the origin of the signal space, by multiplying each N-dimensional signal vector by an $N \times N$ unitary matrix \mathbf{Q} . A unitary matrix has the property $\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = I$, where \mathbf{Q}^T is the transpose of \mathbf{Q} , and I is the $N \times N$ identity matrix.

The rotated signal vectors are equal to

$$\hat{\mathbf{s}}_i = \mathbf{s}_i \mathbf{Q}, \quad i = 1, \dots, M$$
.

⁰©2015, Georgia Institute of Technology (lect11_23)

Signal Set Rotation

Correspondingly, the noise vector \mathbf{n} is replaced with its rotated version

$$\hat{\mathbf{n}} = \mathbf{n}\mathbf{Q}$$
.

The rotated noise vector $\hat{\mathbf{n}}$ is a vector of complex Gaussian random variables that is completely described by its mean and covariance matrix. The mean is

$$E[\hat{\mathbf{n}}] = E[\mathbf{n}]\mathbf{Q} = \mathbf{0}$$
.

The covariance matrix is

$$\Lambda_{\hat{\mathbf{n}}\hat{\mathbf{n}}} = \mathrm{E}[\hat{\mathbf{n}}^T \hat{\mathbf{n}}]
= \mathrm{E}[(\mathbf{n}\mathbf{Q})^T \mathbf{n}\mathbf{Q}]
= \mathrm{E}[\mathbf{Q}^T \mathbf{n}^T \mathbf{n}\mathbf{Q}]
= \mathbf{Q}^T \mathrm{E}[\mathbf{n}^T \mathbf{n}]\mathbf{Q}
= \frac{N_o}{2} \mathbf{Q}^T \mathbf{Q} = \frac{N_o}{2} \mathbf{I} .$$

⁰©2015, Georgia Institute of Technology (lect11_24)

Signal Set Translation

Next consider a translation of the signal set such that

$$\hat{\mathbf{s}}_i = \mathbf{s}_i - \mathbf{a}, \quad i = 1, \dots, M$$

where **a** is a constant vector. In this case, the error probability remains the same since $\hat{d}_{jk} = \tilde{d}_{jk}, j \neq k$. However, the average energy in the signal constellation is altered by the translation and becomes

$$\hat{E}_{av} = \sum_{i=1}^{M} \|\hat{\mathbf{s}}_{i}\|^{2} P_{i}
= \sum_{i=1}^{M} \|\mathbf{s}_{i} - \mathbf{a}\|^{2} P_{i}
= \sum_{i=1}^{M} \{\|\mathbf{s}_{i}\|^{2} - 2\mathbf{s}_{i} \cdot \mathbf{a} + \|\mathbf{a}\|^{2}\} P_{i}
= \sum_{i=1}^{M} \|\mathbf{s}_{i}\|^{2} P_{i} - 2\left(\sum_{i=1}^{M} \mathbf{s}_{i} P_{i}\right) \cdot \mathbf{a} + \|\mathbf{a}\|^{2} \sum_{i=1}^{M} P_{i}
= E_{av} - 2 \{E[\mathbf{s}] \cdot \mathbf{a}\} + \|\mathbf{a}\|^{2}$$
(1)

⁰©2015, Georgia Institute of Technology (lect11_25)

Signal Set Translation

where E_{av} is the average energy of the original signal constellation and $E[\mathbf{s}] = \sum_{i=0}^{M-1} \mathbf{s}_i P_i$ is its centroid (or center of mass).

Differentiating (1) with respect to the vector **a** and setting the result equal to zero will yield the translation that minimizes the average energy in the translated signal constellation. This gives

$$\mathbf{a}_{\mathrm{opt}} = \mathrm{E}[\ \tilde{\mathbf{s}}\]$$
 .

Note that the center of mass of the translated signal constellation is at the origin, and the minimum average energy in the translated signal constellation is

$$\hat{E}_{\min} = E_{\text{av}} - \|\mathbf{a}_{\text{opt}}\|^2 .$$

⁰©2015, Georgia Institute of Technology (lec11_26)