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: M-ary PAM A

With M-ary Pulse Amplitude Modulation, information is transmitted in the car-
rier amplitude, such that the amplitude takes on one of M possible values.

During any baud interval, the transmitted waveform is

2F
Sm(t) = Toam cos(2rf.t), 0 <t <T

ap € {1, 43,45, +(M — 1)}
and FEj is the energy of the signal with the lowest amplitude, i.e., when a,, = +1.

where

Usually, M = 2% for some k, i.e., M = 2,4, 8,16, etc.
During each baud interval of length T', k = log, M bits are transmitted.
The baud rate R = 1/T and the bit rate is R, = kR.
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-

M-ary PAM

~

Then

fi(t) = \l/%cos(%rfct) . 0<t<T

Sm(t) — am\/FOfl (t>

Hence, the signal-space diagram for M-ary PAM is shown below.

M-ary PAM signals can be expressed in terms of signal vectors. Since all the M
signals are linearly dependent, there is only one basis function.
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: M-ary QAM A

Quadrature Amplitude Modulation (QAM) signals can be thought of a indepen-
dent PAM on the inphase (cosine) and quadrature (sine) carrier components.
During any baud interval the transmitted waveform is

2F
Sm(t) = TO (afn cos(2nf.t) —a;, sin(27rfct)> , 05t <T

where
alest e {41, 43,45, (M — 1)}
and 2F) is the energy of the signal with the lowest amplitude,

S

i.e.,, when af ,a’ = +1
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: M-ary QAM A

QAM signals can be expressed in terms of signal vectors. Since the functions
cos 27 f.t and sin 27 f.t, with f.T" > 1, are orthogonal over the interval (0,7), we
have two basis functions

2
fi(t) = \l;cos%rfct, 0<t<T

2
fa(t) = —Gsm%rfct, 0<t<T
Then
Sm(t) = CLfn\/ Eofl(t) + afn\/ E()fg(t), m=1,....M, 0<t<T

Hence

Sm(t) <> sm =V Ey (afn, afn>
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M-ary QAM

~

0000

0001

0011

For the case when M = 2%, k even, the resulting signal space diagram has a
“square constellation.” In this case the QAM signal can be thought of as 2 PAM
signals in quarature. For M = 2* k odd, the constellation takes on a “cross”
form. For example, 16-QAM constellation is

0010

[ [ [ ] [
0100 0101 0111 0110
[ [ [ [
1100 1101 1111 1110
[ [ [ ] [
1000 1001 1011 1010
[ [ [ [
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: M-ary PSK A

Phase shift keyed (PSK) signals transmit information in the carrier phase. Dur-
ing any baud interval, the transmitted waveform is

2F
Sm(t) = 7008(27Tf0t+9k) 0<t<T

where
(m —1)

M

QkE{Zﬂ' : m:1,...,M}

We can rewrite this in the form

2F
Sm(t) = - ( cos 0, cos 27 f.t — sin §,, sin 27rfct> ,m

Using the same basis functions as QAM, we have

I
=

Sm(t) > sm = VvV Ey < cos 0,,, sin 9m>
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8-PSK Constellation

f,0

101
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-
M-ary FSK A

For Frequency shift keyed (FSK) signals, the transmitted signal during any given
baud interval is

Sm(t) = Acos 2 fit +2mfit), 0<t<T
where

fm=m—-1)Ay m=1,....M

We have seen before that the choice Ay = % gives waveforms that are orthogonal.
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: QAM Signals A

Consider QAM signals defined on the interval 0 <t < T"

2F
Sm(t) = TO (af cos (27 f.t) — a;, sin (27 f.t)) ay.,a,, € {+1,£3}

The appropriate basis functions for the signal space are
2 2 .
fi(t) = Gcos (2 f.t) fot) = —Gsm (27 fet)

sm(t) = vV Eoay, fi(t) + v Eoay, fo(t)
Sm = \/Fo(afnaafn)

We randomly choose one of the 16 signals to transmit over an AWGN channel
and receive r = sy, +n, where n = (n1,n3), and the n; are i.i.d. Gaussian random

variables with variance o® = N, /2.

Then

Our task is to find the probability of symbol error with minimum distance (or
aximum likelihood) decisions.
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QAM Signals A

To calculate the probability of symbol error, we first must define appropriate

deciston regions by placing decision boundaries between the signal points. For
16-QAM this is shown below.

Note that a = \/Ej in the figure.

© o - e

‘ | : decision
I N S L / boundaries

decision
regions
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: QAM Signals A

For problems of this type, and especially for one or two-dimensional signal spaces
(this problem is 2-D), it is often easier to calculate the probability of correct re-
ception.

For this problem there are 3 cases to consider, since we can observe graphically
that

‘PO|S5 - ‘PO|SG - PC|SQ - PC|510
‘PO|S() - ‘PO|53 - PC|512 = PC|515
‘PO|51 - PO|SQ - ‘PO|S4 - PC|S7 - PC|Sg - PC|511 - PC|513 - PC|514

All these quantities can be expressed in terms of the parameter

\/Fo) > _ Vo

- o = —
o

QEQ( >

\ /
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: QAM Signals

All these quantities can be expressed in terms of the parameter

VvV E N,
QEQ(—O> ot =
o 2
We have
Pog, = (1-2Q)* =1-4Q +4Q”
Po, = 1-Q)*=1-2Q+ Q"
Po, = (1-Q)(1-2Q) =1-3Q +2Q°
Then
1 1 1
Po = _Ps _Ps = s
C 4C|5+4 C|0+2C|1
9
= 1—3Q+1Q2

Finally, the probability of error is P, =1 — Po = 3Q — %Q2

\_
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: QAM Signals A

Next, we need to find the average symbol energy. Remember that the energy in
a symbol is equal to squared length of the signal vector.

In this case,

1 1 1
E,, = Z(EO + E()) + Z(gEO + 9E0) + §(E0 + 9E()) = 10E)

Hence, Ey = E,,/10, and
oo )0l ) o

o N, 5N,
Finally,
E 9 E
P, = ) o2 | =
@(yin) -39 (15w)
where

Eay : .
= average symbol energy-to-noise ratio

\ Mo /
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: QAM Signals A

What about the bit error probability? That depends on the mapping of bits to
symbols.

With Gray coding, a symbol error will usually result in one bit error. Certainly
at most 4 bits errors will occur. Hence,
Fe

<
— =~ P, <P,
1 b

Also, there are 4 bits per modulated symbol so that the average bit energy-to-
noise ratio is
Eb av — Eav/4

So we can write
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Binary Error Probability A

Consider two signal vectors s; and ss.

The received signal vector is
r=s;,+n

A coherent maximum likelihood or minimum distance receiver decides in favor
of the signal point s; or so that is closest in Euclidean distance to the received
signal point r.

The error probability between s; and s, is

P(Sl,SQ) = Q( d%g)

2N,

where d?, = |[s; — s3||? is the squared Euclidean distance between s; and s,.

\ /
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4 N
Error Probability and Euclidean Distanc

The error probability depends on the Fuclidean distance between the signal vec-
tors.

If we have two signal vectors s; and so, separated by Euclidean distance dio =
||s1 — s2||, then the error probability is

d2
PGQ( 2]1?)

For BPSK dys = 2V E
For BFSK dy» = /2F

c

\ /
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4 N
Voronoi Regions

Now suppose that we have a collection of M signal vectors, s1,89,...,Sy.

The maximum likelihood receiver observes the received vector r and decides
in favour of the signal vector that is closest in Euclidean distance (or squared
Euclidean distance) to r. That is

r— s’

S = argming,

The received signal vector lies in the N-dimensional Euclidean space RY. Sup-
pose that we form M partitions of R in the following fashion

Ri = {r: |r —sif| = min [|r —s;[[}

The R;,2=1,..., M are called Vorono: regions.

The maximum likelihood decision can be put in the form

S = s; whenever r € R;

\ /
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: Error Probability A

Under the assumption of equally likely transmitted symbols, the symbol error
probability can be written as

: %
Py=1—FPo=1——> Pqy.
M = s
where Py, is the probability of a correct decision when s; is sent.

The computation of Py requires the set of probabilities { Prys; } 725

However, a correct decision on s; occurs if and only if the noise vector n does
not move the received vector r = s; + n outside the Voronoi region R;, i.e.,

PC|sj = P{I’ € Rj}

Using the conditional density function p(r|s;), we have

1
o=/,

P0|sj=/R_ﬁ
- N J
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g Union Bound A

In general, the Voronoi regions are very hard to determine so the integral

1 2
— —[lr—s;I[*/No
Feygy = /Rj (WNO)N/26

is very difficult if not impossible to compute, since we need to determine the up-
per and lower limits on an N-fold integral for a often complicated convex region
in an N-dimensional space. In this case, upper and lower bounding techniques
are useful.

Suppose we wish to compute quk.

Consider only the pair of signals s, and s;. Let s; be sent and let E; denote
the event that the receiver choose s;, hence making an error. Note that

P(Ej) = P(sg,s;)

\ /
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: Union Bound

The probability of symbol error for s is

Pgjs, = P (U Ej)

j#k

The union bound on Pg, is

P(UB)<x P

i#k j#k
Hence,
PE|sk < Z P(Sk7sj)
j#k

If the s; are equally likely, then

Ly LYY Plss))

Py =— ) Pgs, < — P(sg,s;
M ;= =M k=1 j+k ’
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g Union Bound A

We have seen earlier that

dz.
P(Sk?Sj> Q( 2]\;)

where di; = || — s;]|*.

Note that Q(z) decreases with x. Hence, a further upper bound can be obtained
by using the minimum distance dy,;, = min;; di; and noting that

d2' 2
P(sp,s;) = Q( 2]’3) <Q( ;Z“;V)

Hence,
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Signal Set Rotation A

The probability of symbol error is invariant to any rotation of the signal constel-
lation {s;}}, about the origin of the signal space. This is a consequence of two
properties.

First, the probability of symbol error depends solely on the set of Euclidean
distances {d;}, j # k between the signal vectors in the signal constellation.

Second, the AWGN is circularly symmetric in all directions of the signal space.

A signal constellation can be rotated about the origin of the signal space, by
multiplying each N-dimensional signal vector by an N x N unitary matrix Q. A
unitary matrix has the property QQ’ = Q'Q = I, where Q7 is the transpose
of Q, and I is the N x N identity matrix.

The rotated signal vectors are equal to

Si:SiQa Zzl,,M

\ /
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Signal Set Rotation A

Correspondingly, the noise vector n is replaced with its rotated version
n =nQ .

The rotated noise vector n is a vector of complex Gaussian random variables
that is completely described by its mean and covariance matrix. The mean is

E[ﬂ] = E[n]Q =0 .
The covariance matrix is

Az = ERTn]
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-
Signal Set Translation A

Next consider a translation of the signal set such that
é,’:SZ‘—a, izl,...,M,

where a is a constant vector. In this case, the error probability remains the same
since dj, = dji, 7 # k. However, the average energy in the signal constellation is
altered by the translation and becomes

. Mo
B = X |sill*F
i—1

L 2
= 2 lsi—al°p
i=1

M
= 5l -2+ JalP} £
M M
S s -2 (z P) at al23" A
=1 1=1 1=1
_ B —2{E[s]-a} + al? 1)
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-
Signal Set Translation A

where E,, is the average energy of the original signal constellation and E[ s | =
» M1, P is its centroid (or center of mass).

Differentiating (1) with respect to the vector a and setting the result equal to
zero will yield the translation that minimizes the average energy in the translated
signal constellation. This gives

aopt:E[é] .

Note that the center of mass of the translated signal constellation is at the origin,
and the minimum average energy in the translated signal constellation is

Emin - Eav - HaoptH2 :
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