EE4601
 Communication Systems

Week 11
Non-Binary Signal Sets
QAM Error Probability
Error Probably Bounds
Rotations and Translations

[^0]
M-ary PAM

With M-ary Pulse Amplitude Modulation, information is transmitted in the carrier amplitude, such that the amplitude takes on one of M possible values.

During any baud interval, the transmitted waveform is

$$
s_{m}(t)=\sqrt{\frac{2 E_{0}}{T}} a_{m} \cos \left(2 \pi f_{c} t\right), 0 \leq t \leq T
$$

where

$$
a_{m} \in\{ \pm 1, \pm 3, \pm 5, \pm(M-1)\}
$$

and E_{0} is the energy of the signal with the lowest amplitude, i.e., when $a_{m}= \pm 1$. Usually, $M=2^{k}$ for some k, i.e., $M=2,4,8,16$, etc.

During each baud interval of length $T, k=\log _{2} M$ bits are transmitted.
The baud rate $R=1 / T$ and the bit rate is $R_{b}=k R$.

[^1]
M-ary PAM

M-ary PAM signals can be expressed in terms of signal vectors. Since all the M signals are linearly dependent, there is only one basis function.

$$
f_{1}(t)=\sqrt{\frac{2}{T}} \cos \left(2 \pi f_{c} t\right) \quad, \quad 0 \leq t \leq T
$$

Then

$$
s_{m}(t)=a_{m} \sqrt{E_{0}} f_{1}(t)
$$

Hence, the signal-space diagram for M-ary PAM is shown below.

[^2]
M-ary QAM

Quadrature Amplitude Modulation (QAM) signals can be thought of a independent PAM on the inphase (cosine) and quadrature (sine) carrier components. During any baud interval the transmitted waveform is

$$
s_{m}(t)=\sqrt{\frac{2 E_{0}}{T}}\left(a_{m}^{c} \cos \left(2 \pi f_{c} t\right)-a_{m}^{s} \sin \left(2 \pi f_{c} t\right)\right), 0 \leq t \leq T
$$

where

$$
a_{m}^{\{c, s\}} \in\{ \pm 1, \pm 3, \pm 5, \pm(M-1)\}
$$

and $2 E_{0}$ is the energy of the signal with the lowest amplitude, i.e., when $a_{m}^{c}, a_{m}^{s}= \pm 1$.

[^3]
M-ary QAM

QAM signals can be expressed in terms of signal vectors. Since the functions $\cos 2 \pi f_{c} t$ and $\sin 2 \pi f_{c} t$, with $f_{c} T \gg 1$, are orthogonal over the interval $(0, T)$, we have two basis functions

$$
\begin{aligned}
& f_{1}(t)=\sqrt{\frac{2}{T}} \cos 2 \pi f_{c} t, 0 \leq t \leq T \\
& f_{2}(t)=-\sqrt{\frac{2}{T}} \sin 2 \pi f_{c} t, 0 \leq t \leq T
\end{aligned}
$$

Then

$$
s_{m}(t)=a_{m}^{c} \sqrt{E_{0}} f_{1}(t)+a_{m}^{s} \sqrt{E_{0}} f_{2}(t), \quad m=1, \ldots, M, \quad 0 \leq t \leq T
$$

Hence

$$
s_{m}(t) \leftrightarrow \mathbf{s}_{\mathbf{m}}=\sqrt{E_{0}}\left(a_{m}^{c}, a_{m}^{s}\right)
$$

[^4]
M-ary QAM

For the case when $M=2^{k}, k$ even, the resulting signal space diagram has a "square constellation." In this case the QAM signal can be thought of as 2 PAM signals in quarature. For $M=2^{k}, k$ odd, the constellation takes on a "cross" form. For example, 16-QAM constellation is

[^5]
M-ary PSK

Phase shift keyed (PSK) signals transmit information in the carrier phase. During any baud interval, the transmitted waveform is

$$
s_{m}(t)=\sqrt{\frac{2 E}{T}} \cos \left(2 \pi f_{c} t+\theta_{k}\right) \quad, 0 \leq t \leq T
$$

where

$$
\theta_{k} \in\left\{2 \pi \frac{(m-1)}{M}, \quad m=1, \ldots, M\right\}
$$

We can rewrite this in the form

$$
s_{m}(t)=\sqrt{\frac{2 E}{T}}\left(\cos \theta_{m} \cos 2 \pi f_{c} t-\sin \theta_{m} \sin 2 \pi f_{c} t\right) \quad, m=1, \ldots, M
$$

Using the same basis functions as QAM, we have

$$
s_{m}(t) \leftrightarrow \mathbf{s}_{\mathbf{m}}=\sqrt{E_{0}}\left(\cos \theta_{m}, \sin \theta_{m}\right)
$$

[^6]
8-PSK Constellation

[^7]
M-ary FSK

For Frequency shift keyed (FSK) signals, the transmitted signal during any given baud interval is

$$
s_{m}(t)=A \cos \left(2 \pi f_{c} t+2 \pi f_{m} t\right), 0 \leq t \leq T
$$

where

$$
f_{m}=(m-1) \Delta_{f}, \quad m=1, \ldots, M
$$

We have seen before that the choice $\Delta_{f}=\frac{1}{2 T}$ gives waveforms that are orthogonal.

[^8]
QAM Signals

Consider QAM signals defined on the interval $0 \leq t \leq T$:

$$
s_{m}(t)=\sqrt{\frac{2 E_{0}}{T}}\left(a_{m}^{c} \cos \left(2 \pi f_{c} t\right)-a_{m}^{s} \sin \left(2 \pi f_{c} t\right)\right) \quad a_{m}^{c}, a_{m}^{s} \in\{ \pm 1, \pm 3\}
$$

The appropriate basis functions for the signal space are

$$
f_{1}(t)=\sqrt{\frac{2}{T}} \cos \left(2 \pi f_{c} t\right) \quad f_{2}(t)=-\sqrt{\frac{2}{T}} \sin \left(2 \pi f_{c} t\right)
$$

Then

$$
\begin{aligned}
s_{m}(t) & =\sqrt{E_{0}} a_{m}^{c} f_{1}(t)+\sqrt{E_{0}} a_{m}^{s} f_{2}(t) \\
\mathbf{s}_{m} & =\sqrt{E_{0}}\left(a_{m}^{c}, a_{m}^{s}\right)
\end{aligned}
$$

We randomly choose one of the 16 signals to transmit over an AWGN channel and receive $\mathbf{r}=\mathbf{s}_{\mathbf{m}}+\mathbf{n}$, where $\mathbf{n}=\left(n_{1}, n_{2}\right)$, and the n_{i} are i.i.d. Gaussian random variables with variance $\sigma^{2}=N_{o} / 2$.

Our task is to find the probability of symbol error with minimum distance (or maximum likelihood) decisions.

[^9]
QAM Signals

To calculate the probability of symbol error, we first must define appropriate decision regions by placing decision boundaries between the signal points. For 16-QAM this is shown below.
Note that $a=\sqrt{E_{0}}$ in the figure.

[^10]
QAM Signals

For problems of this type, and especially for one or two-dimensional signal spaces (this problem is 2-D), it is often easier to calculate the probability of correct reception.

For this problem there are 3 cases to consider, since we can observe graphically that

$$
\begin{aligned}
& P_{C \mid \mathbf{s}_{5}}=P_{C \mid \mathbf{s}_{6}}=P_{C \mid \mathbf{s}_{9}}=P_{C \mid \mathbf{s}_{10}} \\
& P_{C \mid \mathbf{s}_{0}}=P_{C \mid \mathbf{s}_{3}}=P_{C \mid \mathbf{s}_{12}}=P_{C \mid \mathbf{s}_{15}} \\
& P_{C \mid \mathbf{s}_{1}}=P_{C \mid \mathbf{s}_{2}}=P_{C \mid \mathbf{s}_{4}}=P_{C \mid \mathbf{s}_{7}}=P_{C \mid \mathbf{s}_{8}}=P_{C \mid \mathbf{s}_{11}}=P_{C \mid \mathbf{s}_{13}}=P_{C \mid \mathbf{s}_{14}}
\end{aligned}
$$

All these quantities can be expressed in terms of the parameter

$$
Q \equiv Q\left(\frac{\sqrt{E_{0}}}{\sigma}\right) \quad \sigma^{2}=\frac{N_{o}}{2}
$$

[^11]
QAM Signals

All these quantities can be expressed in terms of the parameter

$$
Q \equiv Q\left(\frac{\sqrt{E_{0}}}{\sigma}\right) \quad \sigma^{2}=\frac{N_{o}}{2}
$$

We have

$$
\begin{aligned}
& P_{C \mid \mathbf{s}_{5}}=(1-2 Q)^{2}=1-4 Q+4 Q^{2} \\
& P_{C \mid \mathbf{s}_{0}}=(1-Q)^{2}=1-2 Q+Q^{2} \\
& P_{C \mid \mathbf{s}_{1}}=(1-Q)(1-2 Q)=1-3 Q+2 Q^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
P_{C} & =\frac{1}{4} P_{C \mid \mathbf{s}_{5}}+\frac{1}{4} P_{C \mid \mathbf{s}_{0}}+\frac{1}{2} P_{C \mid \mathbf{s}_{1}} \\
& =1-3 Q+\frac{9}{4} Q^{2}
\end{aligned}
$$

Finally, the probability of error is $P_{e}=1-P_{C}=3 Q-\frac{9}{4} Q^{2}$

[^12]
QAM Signals

Next, we need to find the average symbol energy. Remember that the energy in a symbol is equal to squared length of the signal vector.

In this case,

$$
E_{\mathrm{av}}=\frac{1}{4}\left(E_{0}+E_{0}\right)+\frac{1}{4}\left(9 E_{0}+9 E_{0}\right)+\frac{1}{2}\left(E_{0}+9 E_{0}\right)=10 E_{0}
$$

Hence, $E_{0}=E_{\text {av }} / 10$, and

$$
Q=Q\left(\frac{\sqrt{E_{0}}}{\sigma}\right)=Q\left(\sqrt{\frac{2 E_{0}}{N_{o}}}\right)=Q\left(\sqrt{\frac{E_{\mathrm{av}}}{5 N_{o}}}\right)
$$

Finally,

$$
P_{e}=3 Q\left(\sqrt{\frac{E_{\mathrm{av}}}{5 N_{o}}}\right)-\frac{9}{4} Q^{2}\left(\sqrt{\frac{E_{\mathrm{av}}}{5 N_{o}}}\right)
$$

where

$$
\frac{E_{\mathrm{av}}}{N_{o}}=\text { average symbol energy-to-noise ratio }
$$

[^13]
QAM Signals

What about the bit error probability? That depends on the mapping of bits to symbols.

With Gray coding, a symbol error will usually result in one bit error. Certainly at most 4 bits errors will occur. Hence,

$$
\frac{P_{e}}{4} \lesssim P_{b}<P_{e}
$$

Also, there are 4 bits per modulated symbol so that the average bit energy-tonoise ratio is

$$
E_{b \text { av }}=E_{\mathrm{av}} / 4
$$

So we can write

$$
P_{b} \gtrsim \frac{3}{4} Q\left(\sqrt{\frac{4}{5} \frac{E_{b \mathrm{av}}}{N_{o}}}\right)-\frac{9}{16} Q^{2}\left(\sqrt{\frac{4}{5} \frac{E_{b \mathrm{av}}}{N_{o}}}\right)
$$

[^14]
Binary Error Probability

Consider two signal vectors \mathbf{s}_{1} and \mathbf{s}_{2}.

The received signal vector is

$$
\mathbf{r}=\mathbf{s}_{i}+\mathbf{n}
$$

A coherent maximum likelihood or minimum distance receiver decides in favor of the signal point \mathbf{s}_{1} or \mathbf{s}_{2} that is closest in Euclidean distance to the received signal point r.

The error probability between \mathbf{s}_{1} and \mathbf{s}_{2} is

$$
P\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)=Q\left(\sqrt{\frac{d_{12}^{2}}{2 N_{o}}}\right)
$$

where $d_{12}^{2}=\left\|\mathbf{s}_{1}-\mathbf{s}_{2}\right\|^{2}$ is the squared Euclidean distance between \mathbf{s}_{1} and \mathbf{s}_{2}.

[^15]
Error Probability and Euclidean Distance

The error probability depends on the Euclidean distance between the signal vectors.

If we have two signal vectors \mathbf{s}_{1} and \mathbf{s}_{2}, separated by Euclidean distance $d_{12}=$ $\left\|\mathbf{s}_{1}-\mathbf{s}_{\mathbf{2}}\right\|$, then the error probability is

$$
P_{e}=Q\left(\sqrt{\frac{d_{12}^{2}}{2 N_{o}}}\right)
$$

For BPSK $d_{12}=2 \sqrt{E}$
For BFSK $d_{12}=\sqrt{2 E}$

[^16]
Voronoi Regions

Now suppose that we have a collection of M signal vectors, $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{M}$.
The maximum likelihood receiver observes the received vector \mathbf{r} and decides in favour of the signal vector that is closest in Euclidean distance (or squared Euclidean distance) to \mathbf{r}. That is

$$
\hat{\mathbf{s}}=\operatorname{argmin}_{\mathbf{s}_{i}}\left\|\mathbf{r}-\mathbf{s}_{i}\right\|^{2}
$$

The received signal vector lies in the N-dimensional Euclidean space \mathbf{R}^{N}. Suppose that we form M partitions of \mathbf{R}^{N} in the following fashion

$$
R_{i}=\left\{\mathbf{r}:\left\|\mathbf{r}-\mathbf{s}_{i}\right\|=\min _{j}\left\|\mathbf{r}-\mathbf{s}_{j}\right\|\right\}
$$

The $R_{i}, i=1, \ldots, M$ are called Voronoi regions.
The maximum likelihood decision can be put in the form

$$
\hat{\mathbf{s}}=\mathbf{s}_{i} \text { whenever } \mathbf{r} \in R_{i}
$$

[^17]
Error Probability

Under the assumption of equally likely transmitted symbols, the symbol error probability can be written as

$$
P_{M}=1-P_{C}=1-\frac{1}{M} \sum_{j=1}^{M} P_{C \mid \mathrm{s}_{\mathrm{s}}}
$$

where $P_{C \mid \mathbf{s}_{\mathbf{j}}}$ is the probability of a correct decision when \mathbf{s}_{j} is sent.
The computation of P_{M} requires the set of probabilities $\left\{P_{C \mid \mathbf{s}_{\mathbf{j}}}\right\}_{j=1}^{M}$.
However, a correct decision on \mathbf{s}_{j} occurs if and only if the noise vector \mathbf{n} does not move the received vector $\mathbf{r}=\mathbf{s}_{j}+\mathbf{n}$ outside the Voronoi region R_{j}, i.e.,

$$
P_{C \mid \mathbf{s}_{\mathbf{j}}}=P\left\{\mathbf{r} \in R_{j}\right\}
$$

Using the conditional density function $p\left(\mathbf{r} \mid \mathbf{s}_{j}\right)$, we have

$$
P_{C \mid \mathbf{s}_{\mathbf{j}}}=\int_{R_{j}} \frac{1}{\left(\pi N_{o}\right)^{N / 2}} e^{-\left\|\mathbf{r}-\mathbf{s}_{j}\right\|^{2} / N_{o}}
$$

[^18]
Union Bound

In general, the Voronoi regions are very hard to determine so the integral

$$
P_{C \mid \mathbf{s}_{\mathbf{j}}}=\int_{R_{j}} \frac{1}{\left(\pi N_{o}\right)^{N / 2}} e^{-\left\|\mathbf{r}-\mathbf{s}_{j}\right\|^{2} / N_{o}}
$$

is very difficult if not impossible to compute, since we need to determine the upper and lower limits on an N-fold integral for a often complicated convex region in an N-dimensional space. In this case, upper and lower bounding techniques are useful.

Suppose we wish to compute $P_{C \mid \mathbf{s}_{k}}$.
Consider only the pair of signals \mathbf{s}_{k} and \mathbf{s}_{j}. Let \mathbf{s}_{k} be sent and let E_{j} denote the event that the receiver choose \mathbf{s}_{j}, hence making an error. Note that

$$
P\left(E_{j}\right)=P\left(\mathbf{s}_{k}, \mathbf{s}_{j}\right)
$$

[^19]
Union Bound

The probability of symbol error for \mathbf{s}_{k} is

$$
P_{E \mid \mathbf{s}_{k}}=P\left(\bigcup_{j \neq k} E_{j}\right)
$$

The union bound on $P_{E \mid \mathbf{s}_{k}}$ is

$$
P\left(\bigcup_{j \neq k} E_{j}\right) \leq \sum_{j \neq k} P\left(E_{j}\right)
$$

Hence,

$$
P_{E \mid \mathbf{s}_{k}} \leq \sum_{j \neq k} P\left(\mathbf{s}_{k}, \mathbf{s}_{j}\right)
$$

If the \mathbf{s}_{i} are equally likely, then

$$
P_{M}=\frac{1}{M} \sum_{k=1}^{M} P_{E \mid \mathbf{s}_{k}} \leq \frac{1}{M} \sum_{k=1}^{M} \sum_{j \neq k} P\left(\mathbf{s}_{k}, \mathbf{s}_{j}\right)
$$

[^20]
Union Bound

We have seen earlier that

$$
P\left(\mathbf{s}_{k}, \mathbf{s}_{j}\right)=Q\left(\sqrt{\frac{d_{k j}^{2}}{2 N_{o}}}\right)
$$

where $d_{k j}^{2}=\left\|\mathbf{s}_{k}-\mathbf{s}_{j}\right\|^{2}$.
Note that $Q(x)$ decreases with x. Hence, a further upper bound can be obtained by using the minimum distance $d_{\text {min }}=\min _{j, k} d_{k j}$ and noting that

$$
P\left(\mathbf{s}_{k}, \mathbf{s}_{j}\right)=Q\left(\sqrt{\frac{d_{k j}^{2}}{2 N_{o}}}\right) \leq Q\left(\sqrt{\frac{d_{\min }^{2}}{2 N_{o}}}\right)
$$

Hence,

$$
P_{M} \leq(M-1) Q\left(\sqrt{\frac{d_{\min }^{2}}{2 N_{o}}}\right)
$$

[^21]
Signal Set Rotation

The probability of symbol error is invariant to any rotation of the signal constellation $\left\{\mathbf{s}_{i}\right\}_{i=1}^{M}$ about the origin of the signal space. This is a consequence of two properties.

First, the probability of symbol error depends solely on the set of Euclidean distances $\left\{d_{j k}\right\}, j \neq k$ between the signal vectors in the signal constellation.

Second, the AWGN is circularly symmetric in all directions of the signal space.
A signal constellation can be rotated about the origin of the signal space, by multiplying each N-dimensional signal vector by an $N \times N$ unitary matrix \mathbf{Q}. A unitary matrix has the property $\mathbf{Q Q}^{T}=\mathbf{Q}^{T} \mathbf{Q}=I$, where \mathbf{Q}^{T} is the transpose of \mathbf{Q}, and I is the $N \times N$ identity matrix.
The rotated signal vectors are equal to

$$
\hat{\mathbf{s}}_{i}=\mathbf{s}_{i} \mathbf{Q}, \quad i=1, \ldots, M .
$$

[^22]
Signal Set Rotation

Correspondingly, the noise vector \mathbf{n} is replaced with its rotated version

$$
\hat{\mathbf{n}}=\mathbf{n Q} .
$$

The rotated noise vector $\hat{\mathbf{n}}$ is a vector of complex Gaussian random variables that is completely described by its mean and covariance matrix. The mean is

$$
\mathrm{E}[\hat{\mathbf{n}}]=\mathrm{E}[\mathbf{n}] \mathbf{Q}=\mathbf{0}
$$

The covariance matrix is

$$
\begin{aligned}
\boldsymbol{\Lambda}_{\hat{\mathbf{n}} \hat{\mathbf{n}}} & =\mathrm{E}\left[\hat{\mathbf{n}}^{T} \hat{\mathbf{n}}\right] \\
& =\mathrm{E}\left[(\mathbf{n} \mathbf{Q})^{T} \mathbf{n} \mathbf{Q}\right] \\
& =\mathrm{E}\left[\mathbf{Q}^{T} \mathbf{n}^{T} \mathbf{n} \mathbf{Q}\right] \\
& =\mathbf{Q}^{T} \mathrm{E}\left[\mathbf{n}^{T} \mathbf{n}\right] \mathbf{Q} \\
& =\frac{N_{o}}{2} \mathbf{Q}^{T} \mathbf{Q}=\frac{N_{o}}{2} \mathbf{I} .
\end{aligned}
$$

[^23]
Signal Set Translation

Next consider a translation of the signal set such that

$$
\hat{\mathbf{s}}_{i}=\mathbf{s}_{i}-\mathbf{a}, \quad i=1, \ldots, M
$$

where \mathbf{a} is a constant vector. In this case, the error probability remains the same since $\hat{d}_{j k}=\tilde{d}_{j k}, j \neq k$. However, the average energy in the signal constellation is altered by the translation and becomes

$$
\begin{align*}
\hat{E}_{\mathrm{av}} & =\sum_{i=1}^{M}\left\|\hat{\mathbf{s}}_{i}\right\|^{2} P_{i} \\
& =\sum_{i=1}^{M}\left\|\mathbf{s}_{i}-\mathbf{a}\right\|^{2} P_{i} \\
& =\sum_{i=1}^{M}\left\{\left\|\mathbf{s}_{i}\right\|^{2}-2 \mathbf{s}_{i} \cdot \mathbf{a}+\|\mathbf{a}\|^{2}\right\} P_{i} \\
& =\sum_{i=1}^{M}\left\|\mathbf{s}_{i}\right\|^{2} P_{i}-2\left(\sum_{i=1}^{M} \mathbf{s}_{i} P_{i}\right) \cdot \mathbf{a}+\|\mathbf{a}\|^{2} \sum_{i=1}^{M} P_{i} \\
& =E_{\mathrm{av}}-2\{\mathrm{E}[\mathbf{s}] \cdot \mathbf{a}\}+\|\mathbf{a}\|^{2} \tag{1}
\end{align*}
$$

[^24]
Signal Set Translation

where $E_{\text {av }}$ is the average energy of the original signal constellation and $\mathrm{E}[\mathbf{s}]=$ $\sum_{i=0}^{M-1} \mathbf{s}_{i} P_{i}$ is its centroid (or center of mass).

Differentiating (1) with respect to the vector a and setting the result equal to zero will yield the translation that minimizes the average energy in the translated signal constellation. This gives

$$
\mathbf{a}_{\mathrm{opt}}=\mathrm{E}[\tilde{\mathbf{s}}] .
$$

Note that the center of mass of the translated signal constellation is at the origin, and the minimum average energy in the translated signal constellation is

$$
\hat{E}_{\min }=E_{\mathrm{av}}-\left\|\mathbf{a}_{\mathrm{opt}}\right\|^{2}
$$

[^25]
[^0]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect21_1)

[^1]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect8_11)

[^2]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect8_12)

[^3]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect8_13)

[^4]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect8_14)

[^5]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect8_15)

[^6]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect8_16)

[^7]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect8_17)

[^8]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect8_18)

[^9]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect9_2)

[^10]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect9_3)

[^11]: ${ }^{0}$ ©2011, Georgia Institute of Technology (lect9_4)

[^12]: ${ }^{0}$ ©2011, Georgia Institute of Technology (lect9_5)

[^13]: ${ }^{0}$ ©2011, Georgia Institute of Technology (lect9_6)

[^14]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect9_7)

[^15]: ${ }^{0}$ ©2011, Georgia Institute of Technology (lect9_8)

[^16]: ${ }^{0}$ ©2011, Georgia Institute of Technology (lect9_9)

[^17]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect9_10)

[^18]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect9_11)

[^19]: ${ }^{0}$ (C)2011, Georgia Institute of Technology (lect9_12)

[^20]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect9_13)

[^21]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect9_14)

[^22]: ${ }^{0}$ © 2015, Georgia Institute of Technology (lect11_23)

[^23]: ${ }^{0}$ © 2015, Georgia Institute of Technology (lect11_24)

[^24]: ${ }^{0}$ © 2015, Georgia Institute of Technology (lect11_25)

[^25]: ${ }^{0}$ © 2015, Georgia Institute of Technology (lec11_26)

