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EE4061
Communication Systems

Week 12

Intersymbol Interference

Nyquist Pulse Shaping
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Intersymbol Interference (ISI)

ka ε  {−1,+1}
{a  }k

a     (t-nT)δnΣ
n + h(t)

y(t)

kT
g(t) c(t)

w(t)

x(t)
Tx filter channel Rx filter

AWGN

An ideal channel c(t) only scales and time shifts the signal g(t), but otherwise

leaves it undistorted, i.e. for an ideal channel

c(t) = αδ(t− to)

g(t) ∗ c(t) = αg(t− to)

C(f) = αe−j2πfto
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ISI

|C(f)| argC(f)
 

Slope =

f f

l d
Phase response

!W W !W W

p

!2 ft
o

Amplitude response

is flat or constant

Phase response

is linear

Amplitude and phase response for an ideal channel.

For a more general, non-ideal, channel, let

p(t) = g(t) ∗ c(t) ∗ h(t)
l

P (f) = G(f)C(f)H(f)

Then y(t) =
∑

n anp(t− nT ) + n(t), where n(t) = w(t) ∗ h(t)
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ISI

yi = y(iT ) =
∑

n
anp((i− n)T ) + n(iT )

=
∑

n
anpi−n + ni

where pi−n = p((i− n)T ), ni = nT

yi = aip0 +
∑

n 6=i

anpi−n + ni

aipo− desired term,
∑

n 6=i anpi−n−ISI
ni− noise

In the absence of ISI and noise, yi = aip0. Any pulse p(t), such that the sampled
pulse satisfies the condition

pi = p(iT ) = { p0 i = 0
0 i 6= 0

= p0δi0

yields zero ISI
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Bandlimited Pulse Shaping

What overall pulse shapes p(t), p(t) = g(t) ∗ c(t) ∗ h(t), will yield zero ISI?
Suppose P (f) = 1

2W rect
(

f
2W

)

, where W = 1/2T = R/2, T is the baud duration,

R is the baud rate

2T 3T-3T -2T -T

1.0
p(t)

T

P(f)

-W W

1/2W

f0

p(t) = sinc(2Wt) = sinc(t/T ), T = 1/2W .
Note that

pi = p(iT ) = { 1 i = 0
0 i 6= 0

= δi0

This pulse results in zero ISI. Note that p(t) is noncausal.
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ISI - Problems

a2=1

a1=-1

a0=1

2T 3T-2T -T

1.0
p(t)

T t

Problems:

1. P (f) = 1
2W rect

(

f
2W

)

is and ideal low pass filter that is not realizable.
2. p(t) decays slowly with time. It decreases with 1/|t| for large t. Therefore, it

is very sensitive to sampler phase, i.e., a small error in the sampler timing phase
can lead to significant ISI.

We desire a pulse p(t) that is realizable and has tails that decay quickly in

time.
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Problems with ‘sinc’ pulse

y(t) =
∑

n
anp(t− nT )

y(∆t) =
∑

n
anp(∆t− nT )

=
∑

n
an

sin[π(∆t− nT )/T ]

π(∆t− nT )/T

=
∑

n

sin(π∆t/T ) cos(πn)− cos(π∆t/T ) sin(πn)

π∆t/T − nπ

=
∑

n
an

(−1)n sin(π∆t/T )

π∆t/T − nπ

= a0sinc(∆t/T ) +
sin(π∆t/T )

π

∑

n 6=0

an(−1)n

∆t/T − n

Last term is not absolutely summable.

We have seen yi = y(iT ) = aip0 +
∑

n 6=i anpi−n + ni

where pk = p(kT ), ni = n(iT ).
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Matched Filtering and Pulse Shaping

g(t) = g(t)*c(t)^

+ h(t)g(t) c(t)

w(t)

x(t)
unknown

2/T

• To maximize the signal-to-noise ratio at the output of the receiver filter h(t),
in theory we match the receiver filter to the received pulse ĝ(t) = g(t) ∗ c(t),
i.e., h(t) = g̃(T − t). However, if c(t) is unknown, then so is h(t).

• Practical Solution: Choose h(t) matched to the transmitted pulse g(t), i.e.,
choose h(t) = g(T − t), over-sample by a factor of 2, and process 2 samples

per baud interval.

– This is optimal, similar to the case when c(t) is known, but the proof is
beyond the scope of this course.
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Matched Filtering and Pulse Shaping

• To design the transmit and receiver filters, we will assume an ideal channel

c(t) = δ(t), so that the overall pulse (ignoring time delay) is

p(t) = g(t) ∗ h(t)
= g(t) ∗ g(−t)

• Taking the Fourier transform of both sides

P (f) = G(f)G∗(f) = |G(f)|2

• Hence
|G(f)| =

√

|P (f)|

• For many practical pulses, g(t), we will also see that g(t) = g(−t), i.e., the

pulse is even in t, so that h(t) = g(t). This means that the transmit and
receive matched filters are identical filters.
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Conditions for ISI free transmission
The condition for ISI-free transmission is

pk = δk0p0 =







p0 k = 0
0 k 6= 0

That is, p(t) must have equally spaced zero crossings, separated by T seconds.

Theorem: The pulse p(t) satisfies pk = δk0p0 iff

P∑(f)
∆
=

1

T

∞
∑

n=−∞
P (f + n/T ) = p0

That is the folded spectrum P∑(f) is flat.

PΣ(f)

2T 3T-3T -2T -T

1.0
p(t)

T

P(f)

-W W f0

W=1/2T

0 3/2T-1/2T 1/2T-3/2T

.......... ..........
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ISI free transmission

Proof:

pk =
∫ ∞
−∞

P (f)ej2πfkTdf

=
∞
∑

n=−∞

∫ (2n+1)/2T

(2n−1)/2T
P (f)ej2πfkTdf f ′ = f − n/T

=
∞
∑

n=−∞

∫ 1/2T

−1/2T
P (f ′ + n/T )ej2πk(f

′+n/T )Tdf ′

=
∫ 1/2T

−1/2T
ej2πf

′kT





n=∞
∑

n=−∞
P (f ′ + n/T )



 df ′ (1)

To prove sufficiency, we assume that
∑∞

n=−∞ P (f ′ + n/T ) = p0T is true. Then,

pk = p0T
∫ 1/2T

−1/2T
ej2πf

′kTdf ′ =
sin πk

πk
p0 = δk0pk0

To prove necessity, we have from (1)

pk = T
∫ 1/2T

−1/2T
PΣ(f

′)ej2πf
′kTdf ′
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Nyquist Pulse

Hence, pk and PΣ(f) are a Fourier series pair, i.e.,

PΣ(f) =
∞
∑

k=−∞
pke

−j2πfkT

If pk = p0δk0 is assumed true, then from the above equation PΣ(f) = p0.

• Nyquist Pulse Shaping: A pulse p(t) that yields zero-ISI is one having a
folded spectrum that is flat.

– The pulse p(t) can be generated by choosing P (f) as shown on the

following slide.
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Nyquist Pulse Shaping

2WP(f)
1

1/2

-W W f0

0

0 W

1/2

1
2WP

2WP

N

od(f)

(f)

-W W

-W

Ideal Nyquist pulse

Note P (f) = PN(f) + Pod(f).
Pod(f) can be any function that has skew symmetry about f = W = 1/2T .
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Nyquist Pulse

Note that PΣ(f) is flat under this condition.

2WPΣ(f)
1

f

W=1/2T

fW 2W-3W -2W -W 0

Example: Raised Cosine

2WPod(f) =











−1
2 − 1

2 sin
π(|f |−W )

2fx
W − fx ≤ |f | ≤ W

1
2 − 1

2 sin
π(|f |−W )

2fx
W ≤ |f | ≤ W + fx

fx = bandwidth expansion, fx
W

× 100 = excess bandwidth (%), α = fx
W

= roll off

factor

2WP (f) =























1 0 ≤ |f | ≤ W − fx
1
2

[

1− sin π(|f |−W )
2fx

]

W − fx ≤ |f | ≤ W + fx

0 |f | ≥ W + fx
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Raised Cosine Pulse

2WP(f)

−w−fx −w −w+fx w+fxw−fx w0

α = 1

2WP(f)

2WW0−W−2W

looks like a raised cosine
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Raised Cosine Impulse Response

Impulse response - Since P (f) is even, the inverse cosine transform yields

p(t) = 2
∫ W+fx

0
P (f) cos 2πftdf

= 2.
1

2W

∫ W−fx

0
cos 2πftdf + 2.

1

2W

∫ W+fx

W−fx

1

2



1− sin
π|f | −W

2fx



 cos 2πftdf

=
sin 2πWt

2πWt
.
cos 2πfxt

1− (4fxt)2

T 2T 3T−3T −2T −T

α = 0

α = 1

T=1/2W
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Square Root Raised Cosine Pulse

• To implement a matched filter, we split the overall pulse P (f) between the

transmit and receive filters, i.e., p(t) = g(t) ∗ g(−t).

• However, P (f) = G(f)G∗(f) = |G(f)|2, so that |G(f)| =
√

P (f).

• With square-root raised cosine pulse shaping

√
2W |G(f)| =



























1 0 ≤ |f | ≤ wW − fx
√

1
2

[

1− sin π(|f |−W )
2fx

]

W − fx ≤ |f | ≤ W + fx

0 |f | ≥ W + fx

• The impulse response is

g(t) =



















1− β + 4β/π , t = 0

(β/
√
2) ((1 + 2/π) sin(π/4β) + (1− 2/π) cos(π/4β)) , t = ±T/4β

4β(t/T ) cos((1+β)πt/T )+sin((1−β)πt/T )
π(t/T )(1−(4βt/T )2) , elsewhere

where α = fx/W .

0 c©2011, Georgia Institute of Technology (lect10 17)



✬

✫

✩

✪

Square Root Raised Cosine Pulse

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t/T

g  (t
)

 

 
raised cosine
root raised cosine

Raised cosine and root raised cosine pulses with roll-off factor α = 0.5. The

pulses are truncated to length 6T and time shifted by 3T to yield causal pulses.
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M-ary QAM

• Quadrature Amplitude Modulation (QAM), the transmitted waveform in

each baud interval takes on one of the following M waveforms

sm(t) =

√

√

√

√

2E0

T
g(t)

(

acm cos(2πfct)− asm sin(2πfct)

)

where
a{c,s}m ∈ {±1,±3,±5,±(M − 1)}

and 2E0 is the energy of the signal with the lowest amplitude,

i.e., when acm, a
s
m = ±1.

• You have seen this before for the case g(t) = uT (t); however, practical

systems will use the root-raised cosine pulse for g(t). Note that we use the
normalization,

Eg =
∫ ∞
−∞

g2(t)dt = 1 .
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Eye Diagram with Ideal Nyquist Pulse

Eye diagram when P (f) is an ideal low pass filter.
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Eye Diagram with Raised Cosine Pulse

Eye diagram when P (f) is a raised cosine filter with β = 0.35.
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