EE4601 Communication Systems

Week 13

Partial Response Signals

 $^{^{0}}$ ©2014, Georgia Institute of Technology (lect11_1)

Objective

Objective: Signals with a baud rate of 2W symbols/sec in a bandwidth of W Hz with realizable filters.

Assume
$$c(t) = \delta(t)$$
 (ideal channel)
Then $h(t) = g(T - t)$
 $p(t) = g(t) * g(-t)$
 $P(f) = |G(f)|^2$

Duobinary Signaling

Assume that P(f) has the following form

$$H_N(f) = \frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right) = \begin{cases} 1 & |f| < W \\ 0 & \text{else} \end{cases}$$

where W = 1/2T i.e., the band rate is R = 1/T = 2W symbols/sec

$$P(f) = (1 + e^{-j2\pi fT})H_N(f)$$

$$= 2e^{-j\pi fT} \left(\frac{e^{j\pi fT} + e^{-j\pi fT}}{2}\right)H_N(f)$$

$$= 2\cos(\pi fT)e^{-j\pi fT}H_N(f)$$

$$= 2\cos(\pi fT)e^{-j\pi fT}\frac{1}{2W}\operatorname{rect}\left(\frac{f}{2W}\right)$$

⁰©2013, Georgia Institute of Technology (lect11_3)

Duobinary

$$P(f) = \begin{cases} 2T \cos(\pi f T) e^{-j\pi f T} & |f| < W \\ 0 & \text{else} \end{cases}$$

To get
$$p(t)$$
 we write

$$\left\{ P(f) = H_N(f) + H_N(f)e^{j2\pi fT} \right\} \leftrightarrow \left\{ p(t) = \operatorname{sinc}\left(\frac{t}{T}\right) + \operatorname{sinc}\left(\frac{t-T}{T}\right) \right\}$$

Duobinary

$$c(t) = \sum_{n} a_n p(t - nT)$$

$$c_k = c(kT) = \sum_{n} a_n p((k - n)T) = \sum_{n} a_n p_{k-n}$$
But $p_j = p(jT) = \begin{cases} 1 & j = 0, 1 \\ 0 & j \neq 0, 1 \end{cases}$
Therefore, $c_k = a_k + a_{k-1}$

Since $a_k \in \{-1, +1\}$ $c_k \in \{-2, 0, 2\}$ (3-level)

We can recover $\{a_k\}$ from $\{c_k\}$ by $a_k = c_k - a_{k-1}$ assuming an initial value, e.g. $a_0 = -1$ or +1. This is called <u>decision feedback</u> detection.

Problem : Errors due to noise propagate, i.e., $\hat{a_k} = c_k - \hat{a_{k-1}}$.

If a_{k-1} is in error then $\hat{a_k}$ is likely to be in error.

⁰©2011, Georgia Institute of Technology (lect11_5)

Precoding

Example:

Modified Duobinary

Note that
$$c_k = \begin{cases} \pm 2 & \text{if } b_k = 0 \\ 0 & \text{if } b_k = 1 \end{cases}$$

Note that $c_k = \begin{cases} \pm 2 & \text{if } b_k = 0 \\ 0 & \text{if } b_k = 1 \end{cases}$ Therefore $\{b_k\}$ can be recovered from $\{a_k\}$ by using symbol by symbol detection.

Modified Duobinary

$$a(t) = \sum_{n} a_n \delta(t - nT), d_k = b_k \oplus d_{k-2}, c_k = a_k - a_{k-2}.$$

 $^{^0 @ 2011,}$ Georgia Institute of Technology (lect11_7)

Modified Duobinary

⁰©2011, Georgia Institute of Technology (lect11_8)

Modified Duobinary Pulse

$$P(f) = H_N(f) - e^{-j4\pi fT} H_N(f)$$

$$p(t) = \operatorname{sinc}(t/T) - \operatorname{sinc}((t-2T)/T)$$

⁰©2011, Georgia Institute of Technology (lect11_9)

Modified Duobinary with Precoding

Example:

Note:
$$c_k = \begin{cases} \pm 2 & \text{if } b_k = 1\\ 0 & \text{if } b_k = 0 \end{cases}$$

⁰©2011, Georgia Institute of Technology (lect11_10)

Duobinary Error Probability

Here we consider the error probability of precoded duobinary signaling with symbol-by-symbol detection.

The transmit and receiver filters are implemented as the root-duobinary pulse, such that

$$|G(f)| = |H(f)| = \sqrt{P(f)}$$

We note that the noise process at the output of the receiver filter has power spectral density

 $\Phi_{nn}(f) = \frac{N_o}{2} |H(f)|^2 = \frac{N_o}{2} P(f)$

Since p(t) is not a Nyquist pulse, i.e., $p_k = p(kT) \neq \delta_{k0}$, the noise samples are correlated, and, hence the symbol-by-symbol detector is *suboptimal*. This loss can be recovered by using a *sequence detector*, but we will not discuss here.

The Gaussian noise samples at the output of the receiver matched filter H(f) are zero mean and have variance

$$\sigma_n^2 = \frac{N_o}{2} \int_{-\infty}^{\infty} P(f)df = \frac{N_o}{2} \int_{-1/2T}^{1/2T} 2\cos(\pi f T)df = \frac{2N_o}{\pi}$$

⁰©2013, Georgia Institute of Technology (lect11_−10)

Duobinary Error Probability

Note that the sampled outputs of the matched filter have the Gaussian density function

 $y_k \sim \begin{cases} N(\pm 2, 2N_o/\pi) &, x_k = 0\\ N(0, 2N_o/\pi) &, x_k = 1 \end{cases}$

where the means ± 2 each occur with probability 1/4 and the mean 0 occurs with probability 1/2.

Assuming that the receiver makes decisions according to

$$\hat{b}_k = \begin{cases} 1, & |y_k| < 1 \\ 0, & |y_k| > 1 \end{cases}$$

we have the probability of error

$$P_b = \frac{1}{4} \cdot Q + \frac{1}{4} \cdot Q + \frac{1}{2} \cdot 2Q = \frac{3}{2}Q$$

where

$$Q = Q\left(\frac{1}{\sigma}\right) = Q\left(\sqrt{\frac{\pi}{2N_o}}\right)$$

⁰©2013, Georgia Institute of Technology (lect11_10)

Duobinary Error Probability

The energy per bit is

$$E_b = \int_{-\infty}^{\infty} |G(f)|^2 df = \int_{-\infty}^{\infty} P(f) df = \frac{4}{\pi}$$

Hence, $\frac{\pi}{4}E_b = 1$ and

$$Q = Q\left(\sqrt{\frac{\pi}{2N_o} \cdot \frac{\pi}{4}E_b}\right) = Q\left(\sqrt{\left(\frac{\pi}{4}\right)^2 \frac{2E_b}{N_o}}\right)$$

and

$$P_b = \frac{3}{2}Q\left(\sqrt{\left(\frac{\pi}{4}\right)^2 \frac{2E_b}{N_o}}\right)$$

When compared to binary antipodal signaling with

$$P_b = Q\left(\sqrt{\frac{2E_b}{N_o}}\right)$$

the loss in E_b/N_o performance is $-10\log_{10}(\pi/4)^2 = 2.1$ dB.

⁰©2013, Georgia Institute of Technology (lect11_10)