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EE4601
Communication Systems

Week 13

Partial Response Signals
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Objective

Objective: Signals with a baud rate of 2W symbols/sec in a bandwidth of W Hz
with realizable filters.

{a  }k

ka ε  {−1,+1}
+ h(t)

kT
g(t) c(t)

w(t)

Assume c(t) = δ(t) (ideal channel)

Then h(t) = g(T − t)

p(t) = g(t) ∗ g(−t)

P (f) = |G(f)|2
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Duobinary Signaling

Assume that P (f) has the following form

a     (t-nT)δnΣ
n

a(t)=

{a  }k

(f)H
N+

T

c(t)

T

{c  }k

HN(f) =
1

2W
rect

(

f

2W

)

=







1 |f | < W
0 else

where W = 1/2T i.e., the baud rate is R = 1/T = 2W symbols/sec

P (f) = (1 + e−j2πfT )HN(f)

= 2e−jπfT





ejπfT + e−jπfT

2



HN(f)

= 2 cos(πfT )e−jπfTHN(f)

= 2 cos(πfT )e−jπfT 1

2W
rect

(

f

2W

)
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Duobinary

P (f) =







2T cos(πfT )e−jπfT |f | < W
0 else

π/2

−π/2

-W=-1/2T

|P(f)| arg(P(f))

2 

W=1/2T

f f

To get p(t) we write
{

P (f) = HN(f) +HN(f)e
j2πfT

}

↔

{

p(t) = sinc

(

t

T

)

+ sinc

(

t− T

T

)}

p(t)

−3T −2T −T

0

T 2T 3T
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Duobinary

T

a     (t-nT)δnΣ
n

a(t)=

{a  }k

c(t)

T

{c  }k
p(t)

c(t) =
∑

n
anp(t− nT )

ck = c(kT ) =
∑

n
anp((k − n)T ) =

∑

n
anpk−n

But pj = p(jT ) =







1 j = 0, 1

0 j 6= 0, 1

Therefore, ck = ak + ak−1

Since ak ∈ {−1,+1} ck ∈ {−2, 0, 2} (3-level)

We can recover {ak} from {ck} by ak = ck − ak−1 assuming an initial value, e.g.
a0 = −1 or + 1. This is called decision feedback detection.

Problem : Errors due to noise propagate, i.e., âk = ck − ˆak−1.
If ˆak−1 is in error then âk is likely to be in error.
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Precoding

+ k 
a = 2d 

k 
-1

{b  }k

bk {0,1}ε

(f)H
N+

{c  }k

T

c(t)

T

a(t)

Same as before

P(f)

Impulse
generator

D

a(t)
dk {0,1}ε

{a  }k

logic
D-flip flop

0 - -1
1 - +1

dk = bk ⊕ dk−1 = bk + dk−1(mod 2)

Example:

{bk} 0 0 1 1 1 0 1 0 0 0

{dk} 1 1 1 0 1 0 0 1 1 1 1
{ak} +1 +1 +1 −1 +1 −1 −1 +1 +1 +1 +1

{ck} +2 +2 0 0 0 −2 0 +2 +2 +2
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Modified Duobinary

Note that ck =







±2 if bk = 0

0 if bk = 1
Therefore {bk} can be recovered from {ak} by using symbol by symbol detection.

Modified Duobinary

+ k 
a = 2d 

k 
-1

{b  }k

(f)H
N+

{c  }k

Impulse
generator

2D

a(t)
dk {0,1}ε

{a  }k

0 - -1
1 - +1

2T

c(t)

kT

a(t)

Same as before

P(f)

a(t) =
∑

n anδ(t− nT ), dk = bk ⊕ dk−2, ck = ak − ak−2.
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Modified Duobinary

P (f) = (1− e−j4πfT )HN(f)

= j2e−j2πfT





ej2πfT − e−j2πfT

j2



HN(f)

= j2HN(f) sin 2πfTe
−j2πfT

=







2T sin 2πfTej(π/2−2πfT ) |f | < 1/2T
0 |f | > 1/2T

π/2

−π/2

-W=-1/2T

|P(f)| arg(P(f))

W=1/2T

f f
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Modified Duobinary Pulse

P (f) = HN(f)− e−j4πfTHN(f)

p(t) = sinc(t/T )− sinc((t− 2T )/T )

−3T −2T −T 0 T 2T 3T 4T 5T 6T
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Modified Duobinary with Precoding

Example:

{bk} 0 0 1 1 1 0 1 0 0 0

{dk} 1 1 1 1 0 0 1 0 0 0 0 0
{ak} +1 +1 +1 +1 −1 −1 +1 −1 −1 −1 −1 −1

{ck} 0 0 −2 −2 2 0 −2 0 0 0

Note: ck =







±2 if bk = 1
0 if bk = 0
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Duobinary Error Probability

Here we consider the error probability of precoded duobinary signaling with
symbol-by-symbol detection.

The transmit and receiver filters are implemented as the root-duobinary pulse,
such that

|G(f)| = |H(f)| =
√

P (f)

We note that the noise process at the output of the receiver filter has power
spectral density

Φnn(f) =
No

2
|H(f)|2 =

No

2
P (f)

Since p(t) is not a Nyquist pulse, i.e., pk = p(kT ) 6= δk0, the noise samples are

correlated, and, hence the symbol-by-symbol detector is suboptimal. This loss
can be recovered by using a sequence detector, but we will not discuss here.

The Gaussian noise samples at the output of the receiver matched filter H(f)
are zero mean and have variance

σ2
n =

No

2

∫ ∞

−∞
P (f)df =

No

2

∫ 1/2T

−1/2T
2 cos(πfT )df =

2No

π
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Duobinary Error Probability

Note that the sampled outputs of the matched filter have the Gaussian density
function

yk ∼







N(±2, 2No/π) , xk = 0

N(0, 2No/π) , xk = 1

where the means ±2 each occur with probability 1/4 and the mean 0 occurs with

probability 1/2.
Assuming that the receiver makes decisions according to

b̂k =







1, |yk| < 1
0, |yk| > 1

we have the probability of error

Pb =
1

4
·Q+

1

4
·Q+

1

2
· 2Q =

3

2
Q

where

Q = Q

(

1

σ

)

= Q





√

√

√

√

π

2No




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Duobinary Error Probability

The energy per bit is

Eb =
∫ ∞

−∞
|G(f)|2df =

∫ ∞

−∞
P (f)df =

4

π

Hence, π
4Eb = 1 and

Q = Q





√

√

√

√

π

2No
·
π

4
Eb



 = Q







√

√

√

√

(

π

4

)2 2Eb

No







and

Pb =
3

2
Q







√

√

√

√

(

π

4

)2 2Eb

No







When compared to binary antipodal signaling with

Pb = Q





√

√

√

√

2Eb

No





the loss in Eb/No performance is −10log10(π/4)
2 = 2.1 dB.
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