EE4601 Communication Systems

Week 14

Noncoherent Detection

 $^{^0 \}odot 2011,$ Georgia Institute of Technology (lecture 12_1)

Noncoherent Detection

With noncoherent detection, the carrier phase is not recovered at the receiver. Information is transmitted in amplitude and frequency only, not in the phase of the carrier.

Transmit:

$$s_i(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_c t) \quad 0 \le t \le T$$

Receive:

$$r(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_c t + \Phi) + n(t)$$

Assume: Φ is a random variable with pdf

$$f_{\Phi}(\phi) = \begin{cases} \frac{1}{2\pi} & -\pi \le \phi \le \pi \\ 0 & \text{else} \end{cases}$$

⁰©2009, Georgia Institute of Technology (lecture 23_2)

Noncoherent Detection

Note that f_c is usually very large.

$$c = f_c \lambda_c \to \lambda_c = \frac{c}{f_c}$$

At 1 GHz, $\lambda_c \approx 0.3 \text{ m}$

Therefore, a change in radio path length of 30 cm causes a 2π change in carrier phase.

A vehicle (aircraft) travelling 1000 km/h will travel 278 m/s and experience a carrier phase change of $278/0.3 \times 2\pi = 1853\pi$ rad/s.

Rather than try and track this rapidly varying carrier phase, we may use a non-coherent receiver that does not require the carrier phase.

⁰©2009, Georgia Institute of Technology (lecture 23_3)

Square-Law Correlation Detector

$$r(t) = \sqrt{\frac{2E}{T}}\cos\Phi\cos(2\pi f_c t) - \sqrt{\frac{2E}{T}}\sin\Phi\sin(2\pi f_c t) + n(t)$$

In the absence of noise n(t),

$$y_c = \sqrt{E}\cos\Phi, \ y_s = \sqrt{E}\sin\Phi$$

 $y_c^2 + y_s^2 = E$ the energy in the waveform

The above receiver is called a square-law correlation detector.

⁰©2009, Georgia Institute of Technology (lecture 23_4)

Noncoherent BFSK

Information can only be transmitted in amplitude and frequency. Consider BFSK waveforms where

$$s_1(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_c t)$$

$$s_2(t) = \sqrt{\frac{2E}{T}}\cos(2\pi (f_c + \Delta f)t)$$

Suppose these waveforms are transmitted on an ideal channel with a propagation delay t_d . Then the noiseless received waveforms are

$$s_{1}(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_{c}(t - t_{d})) = \sqrt{\frac{2E}{T}}\cos(2\pi f_{c}t + \Phi_{1})$$

$$s_{2}(t) = \sqrt{\frac{2E}{T}}\cos(2\pi (f_{c} + \Delta f)t - 2\pi (f_{c} + \Delta f)t_{d})) = \sqrt{\frac{2E}{T}}\cos(2\pi (f_{c} + \Delta f)t + \Phi_{2})$$

where $\Phi_1 = -2\pi f_c t_d$ and $\Phi_2 = -2\pi (f_c + \Delta f) t_d$). If we choose $\Delta f = \frac{1}{T}$, then received waveforms $s_1(t)$ and $s_2(t)$ are orthogonal regardless of Φ_1 and Φ_2 .

⁰©2009, Georgia Institute of Technology (lecture 23_5)

Noncoherent BFSK

 $^{^{0}}$ ©
2009, Georgia Institute of Technology (lecture 23_6)

Assume $s_1(t)$ was sent. The probability of bit error is

$$P_b = P(l_2 > l_1)$$

To find P_b , we need the conditional pdfs of l_1 and l_2 given that $s_1(t)$ was sent.

$$x_{c1} = \int_0^T r(t) \sqrt{\frac{2}{T}} \cos(2\pi f_c t) dt$$

$$= \int_0^T \left(\sqrt{\frac{2E}{T}} \cos(2\pi f_c t + \Phi_1) + n(t) \right) \sqrt{\frac{2}{T}} \cos(2\pi f_c t) dt$$

$$= \sqrt{E} \cos \Phi_1 + n_{c1}$$

⁰©2009, Georgia Institute of Technology (lecture 23_7)

$$x_{s1} = \int_0^T r(t) \sqrt{\frac{2}{T}} \sin(2\pi f_c t) dt$$

$$= \int_0^T \left(\sqrt{\frac{2E}{T}} \cos(2\pi f_c t + \Phi_1) + n(t) \right) \sqrt{\frac{2}{T}} \sin(2\pi f_c t) dt$$

$$= \sqrt{E} \sin \Phi_1 + n_{s1}$$

The detector output is

$$l_1 = \sqrt{x_{c1}^2 + x_{s1}^2}$$

⁰©2009, Georgia Institute of Technology (lecture 23_8)

Likewise,

$$x_{c2} = \int_0^T \left(\sqrt{\frac{2E}{T}} \cos(2\pi f_c t + \Phi_1) + n(t) \right) \sqrt{\frac{2}{T}} \cos(2\pi (f_c + \Delta_f) t) dt$$

$$= n_{c2}$$

$$x_{s2} = \int_0^T \left(\sqrt{\frac{2E}{T}} \cos(2\pi f_c t + \Phi_1) + n(t) \right) \sqrt{\frac{2}{T}} \sin(2\pi (f_c + \Delta_f) t) dt$$

$$= n_{s2}$$

The first term in each integral is zero because $s_1(t)$ and $s_2(t)$ are orthogonal for any Φ_1 and Φ_2 .

The detector output is

$$l_2 = \sqrt{x_{c2}^2 + x_{s2}^2} = \sqrt{n_{c2}^2 + n_{s2}^2}$$

⁰©2009, Georgia Institute of Technology (lecture 23_9)

$$n_{c1} = \int_0^T n(t) \sqrt{\frac{2}{T}} \cos(2\pi f_c t) dt$$

$$n_{s1} = \int_0^T n(t) \sqrt{\frac{2}{T}} \sin(2\pi f_c t) dt$$

 n_{c1} and n_{s1} are Gaussian random variables with

$$E[n_{c1}] = E[n_{s1}] = 0, \ \sigma_{n_{c1}}^2 = \sigma_{n_{s1}}^2 = \frac{N_0}{2}, \ E[n_{c1}n_{s1}] = 0$$

The fact that $E[n_{c1}n_{s1}] = 0$ follows from the property

$$\frac{2}{T} \int_0^T \cos(2\pi f_c t) \sin(2\pi f_c t) dt = 0$$

for $f_c T \gg 1$.

⁰©2007, Georgia Institute of Technology (lecture 23_10)

Likewise

$$n_{c2} = \int_0^T n(t) \sqrt{\frac{2}{T}} \cos(2\pi (f_c + \Delta_f)t) dt$$

$$n_{s2} = \int_0^T n(t) \sqrt{\frac{2}{T}} \sin(2\pi (f_c + \Delta_f)t) dt$$

 n_{c2} and n_{s2} are Gaussian random variables with

$$E[n_{c2}] = E[n_{s2}] = 0, \ \sigma_{n_{c2}}^2 = \sigma_{n_{s2}}^2 = \frac{N_0}{2}, \ E[n_{c2}n_{s2}] = 0$$

Since $s_1(t)$ and $s_2(t)$ are orthogonal, it also follows that

$$E[n_{c1}n_{c2}] = 0, E[n_{c1}n_{s2}] = 0, E[n_{s1}n_{c2}] = 0, E[n_{s1}n_{s2}] = 0$$

Hence, n_{c1} , n_{s1} , n_{c2} , n_{s2} are i.i.d. Gaussian $\sim N(0, N_0/2)$.

⁰©2009, Georgia Institute of Technology (lecture 23_11)