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EE4601
Communication Systems

Week 15

Noncoherent Detection

Differential Detection
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Rayleigh Random Variable

Let:

R =
√
X2 + Y 2, Φ = Tan−1 Y

X

where X, Y ∼ N(0, σ2)

Then:

X = R cosΦ

Y = R sinΦ

fR,Φ(r, φ) = fXY (r cosφ, r sinφ)|J |
where
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Rayleigh Random Variable

fR,Φ(r, φ) =
r

2πσ2
exp







− r2

2σ2







fR(r) =
∫ 2π

0
fR,Φ(r, φ)dφ =

r

σ2
exp







− r2

2σ2







, r ≥ 0

fR(r) has a Rayleigh distribution and, for our problem,

fl2(x) =
2x

N0
exp







− x2

N0







, x ≥ 0
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Rician Random Variable

Let:

R =
√
X2 + Y 2, Φ = Tan−1 Y

X

where X ∼ N(
√
E cosΦ1, σ

2), Y ∼ N(
√
E sinΦ1, σ

2)

Using the same procedure as before,

fX,Y (x, y) =
1

2πσ2
exp







−(x−
√
E cosφ1)

2 + (y −
√
E sinφ1)

2

2σ2







fR,Φ(r, φ) =
r

2πσ2
exp







−r2 + E

2σ2







exp







√
Er

σ2
cos(φ− φ1)







fR(r) =
r

σ2
exp







−r2 + E

2σ2







I0





√
Er

σ2



 , r ≥ 0,

where

I0(x) =
1

2π

∫ 2π

0
exp {x cosφ} dφ

is a zero-order modified Bessel function of the first kind.
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Rician Random Variable

For our problem

fl1(x) =
2x

No
exp







−x2 + E

No







I0





2
√
Ex

No



 , x ≥ 0
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Bit Error Probability

Pb = P (l2 > l1|s1(t) sent)
=

∫ ∞

0
P (l2 > l1|l1 and s1(t) sent)f(l1)dl1

P (l2 > l1|l1 and s1(t) sent) =
∫ ∞

l1
f(l2)dl2

= exp







− l21
N0







Pb =
∫ ∞

0
exp







− l21
N0







2l1
N0

exp







−l21 + E

N0







I0





2l1
√
E

N0



 dl1

=
∫ ∞

0

2l1
N0

exp







−2l21 + E

N0







I0





2l1
√
E

N0



 dl1
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Error Probability

Define v = 2l1√
N0
. Then,

Pb =
1

2
exp

{

− E

2N0

}

∫ ∞

0
v exp







−v2 + a2

2







I0 (av) dv

where a =
√

E
N0
.

However, the integral is a Rice pdf that is being integrated over its entire range,

i.e., the integral is equal to 1.

Therefore,

Pb =
1
2
exp

{

− E
2N0

}
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ASK Signals

Noncoherent detection can be used for ASK signals as well. Consider the two

signals

s1(t) =

√

√

√

√

2E

T
cos(2πfct), 0 ≤ t ≤ T

s2(t) = 0, 0 ≤ t ≤ T

We use just a single energy detector at frequency fc.

If s1(t) is sent, the pdf of the detector output, ℓ, is

fℓ|s1(x) =
2x

N0
exp







− x2

N0







, x ≥ 0

If s2(t) is sent, the pdf of the detector output is

fℓ|s2(x) =
2x

No
exp







−x2 + E

No







I0





2
√
Ex

No



 , x ≥ 0
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ASK Signals

The optimum decision threshold, λ, is where the two conditional pdfs cross. To

find the threshold, we solve

fℓ|s1(x) = fℓ|s2(x)

2x

N0
exp







− x2

N0







=
2x

No
exp







−x2 + E

No







I0





2
√
Ex

No





1 = exp

{

− E

No

}

I0





2
√
Ex

No





The solution to the above equation gives λopt.
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ASK Signals

Then

Pb =
1

2

∫ ∞

λopt

fℓ|s1(x)dx+
1

2

∫ λopt

0
fℓ|s2(x)dx

=
1

2
exp







−λopt
2

N0







+
1

2









1−Q









√

√

√

√

2E

No
,

√

√

√

√

√

2λopt
2

No

















where Q(x, y) is called a Marcum-Q function, and

Q









√

√

√

√

2E

No
,

√

√

√

√

√

2λopt
2

No









=
∫ ∞

λopt

2x

No
exp







−x2 + E

No







I0





2
√
Ex

No



 dx

Unfortunately, the result does not exist in closed form.
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Differential Detection of PSK

With differential PSK (DPSK), information can be transmitted in the differen-
tial carrier phase between sucessive symbols.

DPSK can be detected noncoherently by using differentially coherent detection,
where the receiver compares the phase of the received signal between two suc-

cessive signaling intervals.

Suppose that binary DPSK is used. Let θn denote the absolute carrier phase
for the nth symbol, and ∆θn = θn − θn−1 denote the differential carrier phase.

Several mappings exist between the differential carrier phase and source symbols.
Here we consider the mapping

∆θn =







0 , xn = +1

π , xn = −1

The transmitted bandpass waveform is

s(t) =
∑

n
g(t− nT ) cos(2πfct+ θn)
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Quadrature Demodulator

Received bandpass signal is r(t) = s(t) + n(t).

(  )r t 2cos2 πf

2sin2πf

c

c

t

t

LPF

LPF

-

r

rI (  )t

Q (  )t
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Receiver for DPSK

The received signal is

r(t) =
∑

n
g(t− nT ) cos(2πfct+ θn + φ) + n(t)

where
n(t) = nI(t) cos(2πfct)− nQ(t) sin(2πfct)

After quadrature demodulation we have

rI(t) = [2r(t) cos(2πfct)]LP

=
∑

n
g(t− nT ) cos(θn + φ) + nI(t)

rQ(t) = [−2r(t) sin(2πfct)]LP

=
∑

n
g(t− nT ) sin(θn + φ) + nQ(t)
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Receiver for DPSK

    g(  )t

    g t(  )

delay T

delay T

>< 0?

(      )+1n T

(      )+1n T
(  )t

(  )trI

rQ

X

Y

U

device
decision

Y

X

d

dn

dt

dt(  )

xn
^

n

n

n

n

(  )

nT

nT
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Receiver for DPSK

The values of Xk, Xkd, Yk and Ykd are

Xn = 2E cos(θn + φ) + nI

Xnd = 2E cos(θn−1 + φ) + nI
d

Yn = 2E sin(θn + φ) + nQ

Ynd = 2E sin(θn−1 + φ) + n
Q
d

where E is the bit energy given by

E =
1

2

∫ T

0
g2(t)dt

The noise terms are

nI =
∫ (n+1)T

nT
nI(t)g(t)dt , nQ =

∫ (n+1)T

nT
nQ(t)g(t)dt

nI
d =

∫ nT

(n−1)T
nI(t)g(t)dt , n

Q
d =

∫ nT

(n−1)T
nQ(t)g(t)dt

Note that nI , nQ, nI
d and n

Q
d are all i.i.d ∼ N(0, 2ENo).
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Receiver for DPSK

In the absence of noise we have

Un = XnXnd + YnYnd

= 4E2[cos(θn + φ) cos(θn−1 + φ) + sin(θn + φ) sin(θn−1 + φ)]

= 4E2 cos(θn − θn−1)

= 4E2 cos(∆θn)

= 4E2xn

To evaluate the error probability, we need the density function of the detector
output Un given the transmitted symbol xn in the presence of noise.

Note that Un involves the sum of products of Gaussian random variables.
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Density Functions

The conditional density function of Un given xn is [1]

fUn|xn

(u) =



























1
4ENo

exp
{

xnu−2E2

2ENo

}

, −∞ < xnu < 0

1
4ENo

exp
{

xnu−2E2

2ENo

}

Q
(√

2E
No

,
√

2xnu
ENo

)

, 0 < xnu < ∞

where Q(a, b) is the Marcum Q function, defined by

Q(a, b) = 1−
∫ b

0
ze−

z
2
+a

2

2 I0 (za) dz

[1] G.L. Stüber, “Soft Decision Direct-Sequence DPSK Receivers,” IEEE Trans-
actions on Vehicular Technology, vol. 37, no. 3, pp. 151-157, August 1988.
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Error Probability for DPSK

To obtain the bit error probability we assume that xn = ±1 with equal proba-
bility.

Then suppose that xn = 1 is transmitted so that the probability of error is
the probability that Un is less than zero.

We have

Pb =
∫ 0

−∞
fUn|xn=1(u)du

=
∫ 0

−∞
1

4ENo
exp







u− 2E2

2ENo







du

=
1

2
e−E/No

where E = Eb is the bit energy.
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