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Conditional Probability

Consider a sample space that consists of two events A and B.
The conditional probability P (A|B) is the probability of the event A given that

the event B has occurred.

P (A|B) =
P (A

⋂

B)

P (B)

If A and B are independent events, then

P (A
⋂

B) = P (A)P (B)

Hence,
P (A|B) = P (A)

and the occurrence of event B does not change the probability of occurrence of
event A.
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✫
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Disjoint vs. Independent Events

The probability of the union event “A or B” is

P (A
⋃

B) = P (A) + P (B)− P (A
⋂

B)

If events A and B are mutually exclusive or disjoint then

P (A
⋃

B) = P (A) + P (B)

Note that mutually exclusive and independent events are two entirely different
concepts. In fact, independent events A and B with non-zero probabilities, P (A)
and P (B), cannot be mutually exclusive because P (A

⋂

B) = P (A)P (B) > 0. If
they were mutually exclusive then we must have P (A

⋂

B) = 0.

Intuitively, if the events A and B are mutually exclusive, then the occurrence of
the event A precludes the occurrence of the event B. Hence, the knowledge that
A has occurred definitely affects the probability that B has occurred. So A and
B are not independent.
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✫
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✪

Bayes’ Theorem

Let events Ai, i = 1, . . . n be mutually exclusive such that
⋃n
i=1Ai = S, where S

is the sample space. Let B be some event with non-zero probability. Then

P (Ai|B) =
P (Ai, B)

P (B)

=
P (B|Ai)P (Ai)

∑n
i=1 P (B|Ai)P (Ai)

where we use notation P (Ai, B) = P (Ai
⋂

B).

For continuous random variables x and y with probability density functions f(x)

and f(y), the conditional density f(x|y) is

f(x|y) =
f(x, y)

f(y)

=
f(y|x)f(x)

∫

f(y|x)f(x)dx
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✫
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✪

Bayes’ Theorem - Example

Suppose that a digital source generates 0’s and 1’s with unequal probabilities
Q(0) = q and Q(1) = 1 − q. The bits are transmitted over a binary symmet-

ric channel (BSC), with inputs k and outputs j, and transmission probabilities
P (j|k) such that P (1|0) = P (0|1) = p and P (0|0) = P (1|1) = 1 − p, where
P (j|k) is the probability that j is received given that k is transmitted.

If a “1” is received what is the probability that a “0” was transmitted?

P (k|j) =
P (j|k)Q(k)

P (j|0)Q(0) + P (j|1)Q(1)

P (0|1) =
P (1|0)Q(0)

P (1|0)Q(0) + P (1|1)Q(1)

=
pq

pq + (1− p)(1− q)

What is the probability of bit error?

Pe = P (1|0)Q(0) + P (0|1)Q(1) = p
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✪

Random Variables

Consider the random variable X.

The cumulative distribution function (cdf) of X is

FX(x) = P (X ≤ x) , 0 ≤ FX(x) ≤ 1

The complementary distribution function (cdfc) of X is

F c
X(x) = P (X > x) = 1− FX(x) , 0 ≤ FX(x) ≤ 1

The probability density function (pdf) of X is

fX(x) =
dFX(x)

dx
FX(x) =

∫ x

−∞
fX(x)dx
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✫

✩

✪

Bivariate Random Variables

Consider two random variables X and Y . The joint (cdf) of X and Y is

FXY (x, y) = P (X ≤ x, Y ≤ y) , 0 ≤ FXY (x, y) ≤ 1

The joint (cdfc) of X and Y is

F c
XY (x, y) = P (X > x, Y > y) = 1− FXY (x, y) , 0 ≤ FXY (x, y) ≤ 1

The joint (pdf) of X and Y is

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
FXY (x) =

∫ x

−∞

∫ y

−∞
fXY (x, y)dxdy

The marginal pdfs of X and Y are

fX(x) =
∫ ∞

−∞
fXY (x, y)dy fY (x) =

∫ ∞

−∞
fXY (x, y)dx

The conditional pdfs of X and Y are

fX |Y (x|y) =
fXY (x, y)

fY (y)
fY |X(y|x) =

fXY (x, y)

fX(x)
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✫
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✪

Statistical Averages

Consider any random variable X.

The mean of X is
µX = E[X] =

∫ ∞

−∞
xfX(x)dx

The nth moment of X is

E[Xn] =
∫ ∞

−∞
xnfX(x)dx

The variance of X is

σ2
X = E[(X − µX)

2]

= E[X2 − 2XµX + µ2
X ]

= E[X2]− 2E[X]µX + µ2
X

= E[X2]− µ2
X

Consider any function g(X) of the random variable X. Then

E[gn(X)] =
∫ ∞

−∞
gn(x)fX(x)dx
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✫
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✪

Joint Moments

Consider a pair of random variables X and Y . The joint moment of X and Y is

E[X iY j] =
∫ ∞

−∞
xiyjfXY (x, y)dxdy

The covariance of X and Y is

cov[X, Y ] = E[(X − µX)(Y − µY )]

= E[XY ]− E[X]µY − E[Y ]µX + µXµY

= E[XY ]− µXµY

The correlation coefficient of X and Y is

ρ =
cov[X, Y ]

σXσY

Two random variables X and Y are uncorrelated iff cov[XY ] = 0.

Note that independent → uncorrelated.

Two random variables X and Y are orthogonal iff E[XY ] = 0.
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✫

✩

✪

Characteristic Functions

Consider the random variable X. The characteristic or moment generating func-
tion of X is

ΦX(v) = E[ejvX ] =
∫ ∞

−∞
fX(x)e

jvxdx

Except for the sign of the exponent in the integrand, the characteristic function
is just the Fourier transform of the pdf.
Taking the derivative of both sides n times and setting v = 0 gives

dn

dvn
ΦX(v)

∣

∣

∣

∣

∣

v=0

= (j)n
∫ ∞

−∞
xnfX(x)dx

Recognizing the integral on the R.H.S. as the nth moment, we have

(−j)n
dn

dvn
ΦX(v)

∣

∣

∣

∣

∣

v=0

= E[xn]

The pdf is inverse Fourier transform (note change in sign of exponent)

fX(x) =
1

2π

∫ ∞

−∞
ΦX(v)e

−jvxdv
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✫

✩

✪

Joint Characteristic Functions

Consider the random variables X and Y . The joint characteristic function is

ΦXY (v1, v2) = E[ejv1X+jv2Y ] =
∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)e

jv1x+jv2ydxdy

If X and Y are independent, then

ΦXY (v1, v2) = E[ejv1X+jv2Y ]

=
∫ ∞

−∞
fX(x)e

jv1xdx
∫ ∞

−∞
fY (y)e

jv2ydy

= ΦX(v1)ΦY (v2)

Moments can be generated according to

E[XY ] = −∂2ΦXY (v1, v2)

∂v1∂v2
|v1=v2=0

with higher order moments generated in a straight forward extension.
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✫

✩

✪

Binomial Distribution

Let X be a Bernoulli random variable such that X = 0 with probability 1−p
and X = 1 with probability p. Although X is a discrete random random variable
with an associated probability distribution function, it is possible to treat

X as a continuous random variable with a probability density function (pdf)
by using dirac delta functions. The pdf of X can be written as

pX(x) = (1− p)δ(x) + pδ(x− 1)

Let Y =
∑n

i=1Xi, where the Xi are independent and identically distributed (iid)
Bernoulli random variables. Then the random variable Y is an integer from the

set {0, 1, . . . , n} and Y has the binomial probability distribution function

pY (k) = P (Y = k) =





n

k



pk(1− p)n−k, k = 0, 1, . . . , n

Using dirac delta functions, the binomial random variable Y has the pdf

fY (y) =
n
∑

k=0





n

k



pk(1− p)n−kδ(y − k)
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Bernoulli and Binomial RVs
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✫
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Gaussian Random Variables

A real-valued Gaussian random variable X ∼ N(µ, σ2) has the pdf

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2

where µ = E[X] is the mean and σ2 = E[(X − µ)2] is the variance. The random
variable X ∼ N(0, 1) has a standard normal density.
The cumulative distribution function (cdf) of X, FX(x), is

FX(x) =
∫ x

−∞
1√
2πσ

e−
(y−µ)2

2σ2 dy

The complementary distribution function (cdfc), F c
X(x) = 1 − FX(x) of a

standard normal random variable defines the Gaussian Q function

Q(x) ∆=
∫ ∞

x

1√
2π

e−y2/2dy

while its cdf defines the Gaussian Φ function

Φ(x)
∆
= 1−Q(x)
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Gaussian RV
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✫

✩

✪

Gaussian Random Variables

If X is a non-standard normal random variable, X ∼ N(µ, σ2), then

FX(x) = Φ

(

x− µ

σ

)

F c
X(x) = Q

(

x− µ

σ

)

The error function erf(x) and the complementary error function erfc(x),
are defined by

erfc(x)
∆
=

2√
π

∫ ∞

x
e−y2dy erf(x)

∆
=

2√
π

∫ x

0
e−y2dy

Note that erfc(x) 6= 1− erf(x).
The complementary error function and Q function are related as follows

erfc(x) = 2Q(
√
2x)

Q(x) =
1

2
erfc

(

x√
2

)
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✩

✪

Multivariate Gaussian Distribution

Let Xi ∼ N(µi, σ
2
i ), i = 1, . . . , n, be correlated real-valued Gaussian random

variables having covariances

µXiXj
= E [(Xi − µi)(Xj − µj)]

= E [XiXj]− µiµj , 1 ≤ i, j ≤ n

Let

X = (X1, X2, . . . , Xn)
T

x = (x1, x2, . . . , xn)
T

µX = (µ1, µ2, . . . , µn)
T

Λ =











µX1X1
· · · · µX1Xn

...
...

µXnX1
· · · · µXnXn











where XT is the transpose of X.
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✫
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✪

Multivariate Gaussian Distribution

The joint pdf of X defines the multivariate Gaussian distribution

fX(x) =
1

(2π)n/2|Λ|1/2 exp
{

−1

2
(x− µX)

TΛ−1(x− µX)

}

where |Λ| is the determinant of Λ.
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✫

✩

✪

Bivariate Gaussian Distribution

For the case of 2 Gaussian random variables

µX = (µ1, µ2)
T

Λ = σ2





1 ρ
ρ 1





where ρ = µ12/(σ1σ2) = µ12/σ
2. Then |Λ| = σ4(1− ρ2) and

Λ−1 =
σ2

|Λ|





1 −ρ
−ρ 1



 =
1

σ2(1− ρ2)





1 −ρ
−ρ 1





With µx = (0, 0) we have

fX1,X2
(x1, x2) =

1

2πσ2
√
1− ρ2

exp





−1

2σ2(1− ρ2)
(x1, x2)





1 −ρ
−ρ 1









x1

x2









=
1

2πσ2
√
1− ρ2

exp



−x2
1 − 2ρx1x2 + x2

2

2σ2(1− ρ2)




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Bivariate Gaussian Distribution

σX = σY = 1, ρXY = 0.
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✪

Bivariate Gaussian Distribution

σX = σY = 1, ρXY = 0.3.
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Bivariate Gaussian Distribution

σX = σY = 1, ρXY = 0.7.
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✪

Bivariate Gaussian Distribution

σX = σY = 1, ρXY = 0.95.
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✪

Examples

Suppose that X ∼ N(
√
E,No/2). What is the probability that X < 0?

Answer:

P (X < 0) = P (X > 2
√
E)

= Q





2
√
E − µX

σX





= Q





√
E

√

No/2





= Q





√

√

√

√

2E

No





The first line follows from the fact that the pdf of X is symmetric about its mean√
E.
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✫
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Examples

Suppose that X and Y are independent identically distributed Gaussian random
variables with mean

√
E and variance No/2. What is the probability of the joint

event that X < 0 and Y < 0.
Answer:

P (X < 0, Y < 0) = P (X > 2
√
E, Y > 2

√
E)

= P (X > 2
√
E)P (Y > 2

√
E)

= Q2





√

√

√

√

2E

No





The second line follows from the fact that X and Y are independent.
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Examples

Suppose that X and Y are independent identically distributed Gaussian random
variables with mean µ and variance σ2. What is the mean and variance of the

random variable XY .
Answer: We could use the joint pdf fXY (x, y) and integrate, viz.,

∫ ∞

−∞
xyfXY (x, y)dxdy

However, there is a much easier approach

µXY = E[XY ] = E[X]E[Y ] = µXµY = µ2

σ2
XY = E[(XY − µXY )

2]

= E[(XY )2 − 2E[XY ]µXY + µ2
XY

= E[X2]E[Y 2]− µ4

= (σ2 + µ2)2 − µ4

= σ4 + 2µ2σ2
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