EE4601
 Communication Systems

Week 2
Review of Probability, Important Distributions

[^0]
Conditional Probability

Consider a sample space that consists of two events A and B.
The conditional probability $P(A \mid B)$ is the probability of the event A given that the event B has occurred.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

If A and B are independent events, then

$$
P(A \bigcap B)=P(A) P(B)
$$

Hence,

$$
P(A \mid B)=P(A)
$$

and the occurrence of event B does not change the probability of occurrence of event A.

[^1]
Disjoint vs. Independent Events

The probability of the union event " A or B " is

$$
P(A \bigcup B)=P(A)+P(B)-P(A \bigcap B)
$$

If events A and B are mutually exclusive or disjoint then

$$
P(A \bigcup B)=P(A)+P(B)
$$

Note that mutually exclusive and independent events are two entirely different concepts. In fact, independent events A and B with non-zero probabilities, $P(A)$ and $P(B)$, cannot be mutually exclusive because $P(A \cap B)=P(A) P(B)>0$. If they were mutually exclusive then we must have $P(A \cap B)=0$.

Intuitively, if the events A and B are mutually exclusive, then the occurrence of the event A precludes the occurrence of the event B. Hence, the knowledge that A has occurred definitely affects the probability that B has occurred. So A and B are not independent.

[^2]
Bayes’ Theorem

Let events $A_{i}, i=1, \ldots n$ be mutually exclusive such that $\cup_{i=1}^{n} A_{i}=S$, where S is the sample space. Let B be some event with non-zero probability. Then

$$
\begin{aligned}
P\left(A_{i} \mid B\right) & =\frac{P\left(A_{i}, B\right)}{P(B)} \\
& =\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
\end{aligned}
$$

where we use notation $P\left(A_{i}, B\right)=P\left(A_{i} \cap B\right)$.
For continuous random variables x and y with probability density functions $f(x)$ and $f(y)$, the conditional density $f(x \mid y)$ is

$$
\begin{aligned}
f(x \mid y) & =\frac{f(x, y)}{f(y)} \\
& =\frac{f(y \mid x) f(x)}{\int f(y \mid x) f(x) d x}
\end{aligned}
$$

[^3]
Bayes' Theorem - Example

Suppose that a digital source generates 0's and 1's with unequal probabilities $Q(0)=q$ and $Q(1)=1-q$. The bits are transmitted over a binary symmetric channel (BSC), with inputs k and outputs j, and transmission probabilities $P(j \mid k)$ such that $P(1 \mid 0)=P(0 \mid 1)=p$ and $P(0 \mid 0)=P(1 \mid 1)=1-p$, where $P(j \mid k)$ is the probability that j is received given that k is transmitted. If a " 1 " is received what is the probability that a " 0 " was transmitted?

$$
\begin{aligned}
P(k \mid j) & =\frac{P(j \mid k) Q(k)}{P(j \mid 0) Q(0)+P(j \mid 1) Q(1)} \\
P(0 \mid 1) & =\frac{P(1 \mid 0) Q(0)}{P(1 \mid 0) Q(0)+P(1 \mid 1) Q(1)} \\
& =\frac{p q}{p q+(1-p)(1-q)}
\end{aligned}
$$

What is the probability of bit error?

$$
P_{e}=P(1 \mid 0) Q(0)+P(0 \mid 1) Q(1)=p
$$

[^4]
Random Variables

Consider the random variable X.

The cumulative distribution function (cdf) of X is

$$
F_{X}(x)=P(X \leq x), \quad 0 \leq F_{X}(x) \leq 1
$$

The complementary distribution function (cdfc) of X is

$$
F_{X}^{c}(x)=P(X>x)=1-F_{X}(x), \quad 0 \leq F_{X}(x) \leq 1
$$

The probability density function (pdf) of X is

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x} \quad F_{X}(x)=\int_{-\infty}^{x} f_{X}(x) d x
$$

[^5]
Bivariate Random Variables

Consider two random variables X and Y. The joint (cdf) of X and Y is

$$
F_{X Y}(x, y)=P(X \leq x, Y \leq y), \quad 0 \leq F_{X Y}(x, y) \leq 1
$$

The joint (cdfc) of X and Y is

$$
F_{X Y}^{c}(x, y)=P(X>x, Y>y)=1-F_{X Y}(x, y), \quad 0 \leq F_{X Y}(x, y) \leq 1
$$

The joint (pdf) of X and Y is

$$
f_{X Y}(x, y)=\frac{\partial^{2} F_{X Y}(x, y)}{\partial x \partial y} \quad F_{X Y}(x)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X Y}(x, y) d x d y
$$

The marginal pdfs of X and Y are

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y \quad f_{Y}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d x
$$

The conditional pdfs of X and Y are

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)} \quad f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

[^6]
Statistical Averages

Consider any random variable X.

The mean of X is

$$
\mu_{X}=\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

The nth moment of X is

$$
\mathrm{E}\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f_{X}(x) d x
$$

The variance of X is

$$
\begin{aligned}
\sigma_{X}^{2} & =\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =\mathrm{E}\left[X^{2}-2 X \mu_{X}+\mu_{X}^{2}\right] \\
& =\mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X] \mu_{X}+\mu_{X}^{2} \\
& =\mathrm{E}\left[X^{2}\right]-\mu_{X}^{2}
\end{aligned}
$$

Consider any function $g(X)$ of the random variable X. Then

$$
\mathrm{E}\left[g^{n}(X)\right]=\int_{-\infty}^{\infty} g^{n}(x) f_{X}(x) d x
$$

[^7]
Joint Moments

Consider a pair of random variables X and Y. The joint moment of X and Y is

$$
\mathrm{E}\left[X^{i} Y^{j}\right]=\int_{-\infty}^{\infty} x^{i} y^{j} f_{X Y}(x, y) d x d y
$$

The covariance of X and Y is

$$
\begin{aligned}
\operatorname{cov}[X, Y] & =\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\mathrm{E}[X Y]-\mathrm{E}[X] \mu_{Y}-\mathrm{E}[Y] \mu_{X}+\mu_{X} \mu_{Y} \\
& =\mathrm{E}[X Y]-\mu_{X} \mu_{Y}
\end{aligned}
$$

The correlation coefficient of X and Y is

$$
\rho=\frac{\operatorname{cov}[X, Y]}{\sigma_{X} \sigma_{Y}}
$$

Two random variables X and Y are uncorrelated iff $\operatorname{cov}[X Y]=0$.
Note that independent \rightarrow uncorrelated.
Two random variables X and Y are orthogonal iff $\mathrm{E}[X Y]=0$.

[^8]
Characteristic Functions

Consider the random variable X. The characteristic or moment generating function of X is

$$
\Phi_{X}(v)=\mathrm{E}\left[e^{j v X}\right]=\int_{-\infty}^{\infty} f_{X}(x) e^{j v x} d x
$$

Except for the sign of the exponent in the integrand, the characteristic function is just the Fourier transform of the pdf.
Taking the derivative of both sides n times and setting $v=0$ gives

$$
\left.\frac{d^{n}}{d v^{n}} \Phi_{X}(v)\right|_{v=0}=(j)^{n} \int_{-\infty}^{\infty} x^{n} f_{X}(x) d x
$$

Recognizing the integral on the R.H.S. as the nth moment, we have

$$
\left.(-j)^{n} \frac{d^{n}}{d v^{n}} \Phi_{X}(v)\right|_{v=0}=\mathrm{E}\left[x^{n}\right]
$$

The pdf is inverse Fourier transform (note change in sign of exponent)

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{X}(v) e^{-j v x} d v
$$

[^9]
Joint Characteristic Functions

Consider the random variables X and Y. The joint characteristic function is

$$
\Phi_{X Y}\left(v_{1}, v_{2}\right)=\mathrm{E}\left[e^{j v_{1} X+j v_{2} Y}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) e^{j v_{1} x+j v_{2} y} d x d y
$$

If X and Y are independent, then

$$
\begin{aligned}
\Phi_{X Y}\left(v_{1}, v_{2}\right) & =\mathrm{E}\left[e^{j v_{1} X+j v_{2} Y}\right] \\
& =\int_{-\infty}^{\infty} f_{X}(x) e^{j v_{1} x} d x \int_{-\infty}^{\infty} f_{Y}(y) e^{j v_{2} y} d y \\
& =\Phi_{X}\left(v_{1}\right) \Phi_{Y}\left(v_{2}\right)
\end{aligned}
$$

Moments can be generated according to

$$
\mathrm{E}[X Y]=-\left.\frac{\partial^{2} \Phi_{X Y}\left(v_{1}, v_{2}\right)}{\partial v_{1} \partial v_{2}}\right|_{v_{1}=v_{2}=0}
$$

with higher order moments generated in a straight forward extension.

[^10]
Binomial Distribution

Let X be a Bernoulli random variable such that $X=0$ with probability $1-p$ and $X=1$ with probability p. Although X is a discrete random random variable with an associated probability distribution function, it is possible to treat X as a continuous random variable with a probability density function (pdf) by using dirac delta functions. The pdf of X can be written as

$$
p_{X}(x)=(1-p) \delta(x)+p \delta(x-1)
$$

Let $Y=\sum_{i=1}^{n} X_{i}$, where the X_{i} are independent and identically distributed (iid) Bernoulli random variables. Then the random variable Y is an integer from the set $\{0,1, \ldots, n\}$ and Y has the binomial probability distribution function

$$
p_{Y}(k)=P(Y=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

Using dirac delta functions, the binomial random variable Y has the pdf

$$
f_{Y}(y)=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \delta(y-k)
$$

[^11]
Bernoulli and Binomial RVs

[^12]
Gaussian Random Variables

A real-valued Gaussian random variable $X \sim N\left(\mu, \sigma^{2}\right)$ has the pdf

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

where $\mu=\mathrm{E}[X]$ is the mean and $\sigma^{2}=\mathrm{E}\left[(X-\mu)^{2}\right]$ is the variance. The random variable $X \sim N(0,1)$ has a standard normal density.
The cumulative distribution function (cdf) of $X, F_{X}(x)$, is

$$
F_{X}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y
$$

The complementary distribution function (cdfc), $F_{X}^{c}(x)=1-F_{X}(x)$ of a standard normal random variable defines the Gaussian Q function

$$
Q(x) \triangleq \int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y
$$

while its cdf defines the Gaussian Φ function

$$
\Phi(x) \triangleq 1-Q(x)
$$

[^13]
Gaussian RV

[^14]
Gaussian Random Variables

If X is a non-standard normal random variable, $X \sim N\left(\mu, \sigma^{2}\right)$, then

$$
\begin{aligned}
& F_{X}(x)=\Phi\left(\frac{x-\mu}{\sigma}\right) \\
& F_{X}^{c}(x)=Q\left(\frac{x-\mu}{\sigma}\right)
\end{aligned}
$$

The error function $\operatorname{erf}(x)$ and the complementary error function $\operatorname{erfc}(x)$, are defined by

$$
\operatorname{erfc}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-y^{2}} d y \quad \operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^{2}} d y
$$

Note that $\operatorname{erfc}(x) \neq 1-\operatorname{erf}(x)$.
The complementary error function and Q function are related as follows

$$
\begin{aligned}
\operatorname{erfc}(x) & =2 Q(\sqrt{2} x) \\
Q(x) & =\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
\end{aligned}
$$

[^15]
Multivariate Gaussian Distribution

Let $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right), i=1, \ldots, n$, be correlated real-valued Gaussian random variables having covariances

$$
\begin{aligned}
\mu_{X_{i} X_{j}} & =\mathrm{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right] \\
& =\mathrm{E}\left[X_{i} X_{j}\right]-\mu_{i} \mu_{j}, \quad 1 \leq i, j \leq n
\end{aligned}
$$

Let

$$
\begin{aligned}
\mathbf{X} & =\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T} \\
\mathbf{x} & =\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \\
\boldsymbol{\mu}_{X} & =\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{T} \\
\mathbf{\Lambda} & =\left[\begin{array}{cccc}
\mu_{X_{1} X_{1}} & \cdots & \cdots & \cdot \\
\vdots & \mu_{X_{1} X_{n}} \\
\mu_{X_{n} X_{1}} & \cdots & \cdots & \cdot \\
\mu_{X_{n} X_{n}}
\end{array}\right]
\end{aligned}
$$

where \mathbf{X}^{T} is the transpose of \mathbf{X}.

[^16]
Multivariate Gaussian Distribution

The joint pdf of \mathbf{X} defines the multivariate Gaussian distribution

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}|\boldsymbol{\Lambda}|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{X}\right)^{T} \boldsymbol{\Lambda}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{X}\right)\right\}
$$

where $|\boldsymbol{\Lambda}|$ is the determinant of $\boldsymbol{\Lambda}$.

[^17]
Bivariate Gaussian Distribution

For the case of 2 Gaussian random variables

$$
\begin{aligned}
\boldsymbol{\mu}_{X} & =\left(\mu_{1}, \mu_{2}\right)^{T} \\
\boldsymbol{\Lambda} & =\sigma^{2}\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]
\end{aligned}
$$

where $\rho=\mu_{12} /\left(\sigma_{1} \sigma_{2}\right)=\mu_{12} / \sigma^{2}$. Then $|\boldsymbol{\Lambda}|=\sigma^{4}\left(1-\rho^{2}\right)$ and

$$
\boldsymbol{\Lambda}^{-1}=\frac{\sigma^{2}}{|\boldsymbol{\Lambda}|}\left[\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right]=\frac{1}{\sigma^{2}\left(1-\rho^{2}\right)}\left[\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right]
$$

With $\boldsymbol{\mu}_{x}=(0,0)$ we have

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left[\frac{-1}{2 \sigma^{2}\left(1-\rho^{2}\right)}\left(x_{1}, x_{2}\right)\left(\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right)\binom{x_{1}}{x_{2}}\right] \\
& =\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{x_{1}^{2}-2 \rho x_{1} x_{2}+x_{2}^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right]
\end{aligned}
$$

[^18]
Bivariate Gaussian Distribution

0

[^19]
Bivariate Gaussian Distribution

$\sigma_{X}=\sigma_{Y}=1, \rho_{X Y}=0.3$.

[^20]
Bivariate Gaussian Distribution

[^21]
Bivariate Gaussian Distribution

(

[^22]
Examples

Suppose that $X \sim N\left(\sqrt{E}, N_{o} / 2\right)$. What is the probability that $X<0$? Answer:

$$
\begin{aligned}
P(X<0) & =P(X>2 \sqrt{E}) \\
& =Q\left(\frac{2 \sqrt{E}-\mu_{X}}{\sigma_{X}}\right) \\
& =Q\left(\frac{\sqrt{E}}{\sqrt{N_{o} / 2}}\right) \\
& =Q\left(\sqrt{\frac{2 E}{N_{o}}}\right)
\end{aligned}
$$

The first line follows from the fact that the pdf of X is symmetric about its mean \sqrt{E}.

[^23]
Examples

Suppose that X and Y are independent identically distributed Gaussian random variables with mean \sqrt{E} and variance $N_{o} / 2$. What is the probability of the joint event that $X<0$ and $Y<0$.
Answer:

$$
\begin{aligned}
P(X<0, Y<0) & =P(X>2 \sqrt{E}, Y>2 \sqrt{E}) \\
& =P(X>2 \sqrt{E}) P(Y>2 \sqrt{E}) \\
& =Q^{2}\left(\sqrt{\frac{2 E}{N_{o}}}\right)
\end{aligned}
$$

The second line follows from the fact that X and Y are independent.

[^24]
Examples

Suppose that X and Y are independent identically distributed Gaussian random variables with mean μ and variance σ^{2}. What is the mean and variance of the random variable $X Y$.
Answer: We could use the joint pdf $f_{X Y}(x, y)$ and integrate, viz.,

$$
\int_{-\infty}^{\infty} x y f_{X Y}(x, y) d x d y
$$

However, there is a much easier approach

$$
\begin{aligned}
\mu_{X Y} & =\mathrm{E}[X Y]=\mathrm{E}[X] \mathrm{E}[Y]=\mu_{X} \mu_{Y}=\mu^{2} \\
\sigma_{X Y}^{2} & =\mathrm{E}\left[\left(X Y-\mu_{X Y}\right)^{2}\right] \\
& =\mathrm{E}\left[(X Y)^{2}-2 \mathrm{E}[X Y] \mu_{X Y}+\mu_{X Y}^{2}\right. \\
& =\mathrm{E}\left[X^{2}\right] \mathrm{E}\left[Y^{2}\right]-\mu^{4} \\
& =\left(\sigma^{2}+\mu^{2}\right)^{2}-\mu^{4} \\
& =\sigma^{4}+2 \mu^{2} \sigma^{2}
\end{aligned}
$$

[^25]
[^0]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_1)

[^1]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_2)

[^2]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect2_3)

[^3]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect2_4)

[^4]: ${ }^{0}$ ©2013, Georgia Institute of Technology (lect2_5)

[^5]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_6)

[^6]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_7)

[^7]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_8)

[^8]: ${ }^{0}$ ©2011, Georgia Institute of Technology (lect2_9)

[^9]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_10)

[^10]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_11)

[^11]: ${ }^{0}$ © 2013, Georgia Institute of Technology (lect2_12)

[^12]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_13)

[^13]: ${ }^{0}$ © 2013, Georgia Institute of Technology (lect2_14)

[^14]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect2_15)

[^15]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_16)

[^16]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_17)

[^17]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect2_18)

[^18]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect2_19)

[^19]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_20)

[^20]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_21)

[^21]: ${ }^{0}$ © 2011 , Georgia Institute of Technology (lect2_22)

[^22]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect2_23)

[^23]: ${ }^{0}$ © 2013, Georgia Institute of Technology (lect2_24)

[^24]: ${ }^{0}$ © 2013, Georgia Institute of Technology (lect2_25)

[^25]: ${ }^{0}$ © 2013, Georgia Institute of Technology (lect2_26)

