EE4601 Communication Systems

Week 3

Random Processes, Stationarity, Means, Correlations

Random Processes

A random process or stochastic process, X(t), is an ensemble of ζ sample functions $\{X_1(t), X_2(t), \dots, X_{\zeta}(t)\}$ together with a probability rule which assigns a probability to any meaningful event associated with the observation of these sample functions.

Suppose the sample function $X_i(t)$ corresponds to the sample point s_i in the sample space S and occurs with probability P_i .

- ζ may be finite or infinite.
- Sample functions may be defined at discrete or continuous time instants.
 - this defines discrete- or continuous-time random processes.
- Sample function values may take on discrete or continuous values.
 - this defines discrete- or continuous-parameter random processes.

⁰©2013, Georgia Institute of Technology (lect3_2)

Random Processes

 $^{^{0}}$ ©
2011, Georgia Institute of Technology (lect
3_3)

Random Processes vs. Random Variables

What is the difference between random variable and processes?

- For a random variable, the outcome of a random experiment is mapped onto a *variable*, e.g., a number.
- For a random processes, the outcome of a random experiment is mapped onto a *waveform* that is a function of time.

Suppose that we observe a random process X(t) at some time t_1 to generate the observation $X(t_1)$ and that the number of possible sample functions or waveforms, ζ , is finite.

If $X_i(t_1)$ is observed with probability P_i , then the collection of numbers $\{X_i(t_1)\}, i$ 1, 2, ..., ζ forms a random variable, denoted by $X(t_1)$, having the probability distribution P_i , $i = 1, 2, ..., \zeta$.

⁰©2012, Georgia Institute of Technology (lect3_4)

Random Processes

The collection of n random variables, $X(t_1), \ldots, X(t_n)$, has the joint cdf

$$F_{X(t_1),\ldots,X(t_n)}(x_1,\ldots,x_n) = P_r(X(t_1) < x_1,\ldots,X(t_n) < x_n)$$
.

A more compact notation can be obtained by defining the vectors

$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T$$

 $\mathbf{X}(t) = (X(t_1), X(t_2), \dots, X(t_n))^T$

Then the joint cdf and joint pdf of $\mathbf{X}(t)$ are, respectively,

$$F_{\mathbf{X}(t)}(\mathbf{x}) = P(\mathbf{X}(t) \leq \mathbf{x})$$

 $p_{\mathbf{X}(t)}(\mathbf{x}) = \frac{\partial^n F_{\mathbf{X}(t)}(\mathbf{x})}{\partial x_1 \partial x_2 \cdots \partial x_n}$

A random process is **strictly stationary** if and only if the equality

$$p_{\mathbf{X}(t)}(\mathbf{x}) = p_{\mathbf{X}(t+\tau)}(\mathbf{x})$$

holds for all sets of time instants $\{t_1, t_2, \ldots, t_n\}$ and all time shifts τ .

⁰©2011, Georgia Institute of Technology (lect3_5)

Ensemble and Time Averages

For a random process, we define the following two operators

$$E[\;\cdot\;] \stackrel{\Delta}{=}$$
 ensemble average $<\;\cdot\;>\;\stackrel{\Delta}{=}\;$ time average

The ensemble mean or ensemble average of a random process X(t) at time t is

$$\mu_X(t) \equiv \mathrm{E}[X(t)] = \int_{-\infty}^{\infty} x p_{X(t)}(x) dx$$

The time average mean or time average of a random process X(t) is

$$\langle X(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt$$

• In general, the time average mean $\langle X(t) \rangle$ is also a random variable, because it depends on the particular sample function that is observed for time averaging.

 $^{^0}$ ©2013, Georgia Institute of Technology (lect3_6)

Example

Consider the random process shown below.

$$X_{1}(t) = a$$
 $P_{1} = 1/4$

$$X_2(t) = 0$$
 $P_2 = 1/2$

$$X_3(t) = -a$$
 $P_3 = 1/4$

 $^{^{0}}$ ©
2011, Georgia Institute of Technology (lect
3_7)

Example

The ensemble mean is

$$E[X(t)] = X_1(t)P_1 + X_2(t)P_2 + X_3(t)P_3$$

= $a \cdot 1/4 + 0 \cdot 1/2 + (-a) \cdot 1/4 = 0$

The time average mean is

$$\langle X(t) \rangle = \begin{cases} a & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \\ -a & \text{with probability } 1/4 \end{cases}$$

Note that $\langle X(t) \rangle$ is a random variable (since it depends on the sample function that is chosen for time averaging, while $\mathrm{E}[X(t)]$ is just a number (that in the above example is not a function of time t, but in general may a function of the time variable t).

⁰©2011, Georgia Institute of Technology (lect3_8)

Moments and Correlations

 $\mathbf{E}[\ \cdot\] = \text{ensemble average operator}.$

[Ensemble] Mean: $\mu_X(t_1) = \mathbb{E}[X(t_1)] = \int_{-\infty}^{\infty} x f_{X(t_1)}(x) dx$

[Ensemble] Variance: $\sigma_X^2(t_1) = \mathrm{E}[(X(t_1) - \mu_X(t_1))^2] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_{X(t_1)}(x) dx$

[Ensemble] Autocorrelation: $\phi_{XX}(t_1, t_2) = E[X(t_1)X(t_2)]$

[Ensemble] Autocovariance:

$$\mu_{XX}(t_1, t_2) = \mathrm{E}[(X(t_1) - \mu_X(t_1))(X(t_2) - \mu_X(t_2))]$$

= $\phi_{XX}(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$

If X(t) has zero mean, then $\mu_{XX}(t_1, t_2) = \phi_{XX}(t_1, t_2)$.

⁰©2013, Georgia Institute of Technology (lect3_9)

Example

Consider the random process

$$X(t) = A\cos(2\pi f_c t + \Theta)$$

where A and f_c are constants. The phase Θ is assumed to be a uniformly distributed random variable with pdf

$$f_{\Theta}(\theta) = \begin{cases} 1/(2\pi) , & 0 \le \theta \le 2\pi \\ 0 , & \text{elsewhere} \end{cases}$$

The ensemble mean of $X(t_1)$ is obtained by averaging over the pdf of Θ :

$$\mu_X(t_1) = \mathcal{E}_{\Theta}[X(t_1)] = \mathcal{E}_{\Theta}[A\cos(2\pi f_c t_1 + \Theta)]$$

$$= \frac{A}{2\pi} \int_{-\pi}^{\pi} \cos(2\pi f_c t_1 + \theta) d\theta$$

$$= \frac{A}{2\pi} \sin(2\pi f_c t_1 + \theta) \Big|_{-\pi}^{\pi}$$

$$= 0$$

⁰©2013, Georgia Institute of Technology (lect3_10)

Example (cont'd)

The autocorrelation of $X(t) = A\cos(2\pi f_c t + \Theta)$ is

$$\phi_{XX}(t_1, t_2) = \mathcal{E}_{\Theta}[X(t_1)X(t_2)]$$

$$= \mathcal{E}_{\Theta}[A^2 \cos(2\pi f_c t_1 + \Theta) \cos(2\pi f_c t_2 + \Theta)]$$

$$= \frac{A^2}{2} \mathcal{E}_{\Theta}[\cos(2\pi f_c t_1 + 2\pi f_c t_2 + 2\Theta)] + \frac{A^2}{2} \mathcal{E}_{\Theta}[\cos(2\pi f_c (t_1 - t_2))]$$

But

$$E_{\Theta}[\cos(2\pi f_c t_1 + 2\pi f_c t_2 + 2\Theta)] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(2\pi f_c t_1 + 2\pi f_c t_2 + 2\theta) d\theta$$
$$= \frac{1}{4\pi} \sin(2\pi f_c t_1 + 2\pi f_c t_2 + 2\theta) d\theta \Big|_{-\pi}^{\pi}$$
$$= 0$$

Example (cont'd)

Also,

$$E_{\Theta}[\cos(2\pi f_c(t_1 - t_2))] = \cos 2\pi f_c(t_1 - t_2)$$

Hence,

$$\phi_{XX}(t_1, t_2) = \frac{A^2}{2} \cos 2\pi f_c(t_1 - t_2)$$
$$= \frac{A^2}{2} \cos 2\pi f_c \tau, \quad \tau = t_1 - t_2$$

The autocovariance of X(t) is

$$\mu_{XX}(t_1, t_2) = \phi_{XX}(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$$

= $\phi_{XX}(\tau)$

since $\mu_X(t) = 0$.

Wide Sense Stationary

A wide sense stationary random process X(t) has the property

$$\mu_X(t) = \mu_X$$
 a constant
 $\phi_X(t_1, t_2) = \phi_X(\tau)$ where $\tau = t_2 - t_1$

The autocorrelation function only depends on the time difference τ .

If a random process is strictly stationary, then it is wide sense stationary. The converse is not true.

strictly stationary \longrightarrow wide sense stationary

For a Gaussian random process only

strictly stationary \longleftrightarrow wide sense stationary

The previous example is a wide sense stationary random process.

⁰©2011, Georgia Institute of Technology (lect3_13)

Some Properties of $\phi_{XX}(\tau)$

The autocorrelation function, $\phi_{XX}(\tau)$, of a wide sense stationary random process X(t) satisfies the following properties.

- 1. $\phi_{XX}(0) = E[X^2(t)]$: total power ac + dc
- 2. $\phi_{XX}(\tau) = \phi_{XX}(-\tau)$: even function
- 3. $|\phi_{XX}(\tau)| \leq \phi_{XX}(0)$: a variant of the Cauchy-Schwartz inequality. Proof on next slide.
- 4. $\phi_{XX}(\infty) = E^2[X(t)] = \mu_X^2$: dc power, if X(t) has no periodic components.
- 5. If $p_{X(t)}(x) = p_{X(t+T)}(x)$, i.e., the pdf of X(t) is periodic in t with period T, then $\phi_{XX}(\tau) = \phi_{XX}(\tau + T)$. In other words, if $p_{X(t)}(x)$ is periodic in t with period T, then $\phi_{XX}(\tau)$ is periodic in τ with period T. Such a random process is said to be **periodic wide sense stationary** or **cyclostationary**. Digitally modulated waveforms are cyclostationary random processes.

⁰©2011, Georgia Institute of Technology (lect3_14)

Some Properties of $\phi_{XX}(\tau)$

The inequality $|\phi_{XX}(\tau)| \leq \phi_{XX}(0)$ can be established through the following steps.

$$0 \leq E[(X(t+\tau) \pm X(t))^{2}]$$

$$= E[X^{2}(t) + X^{2}(t+\tau) \pm X(t+\tau)X(t)]$$

$$= E[X^{2}(t)] + E[X^{2}(t+\tau)] \pm E[X(t+\tau)X(t)]$$

$$= 2E[X^{2}(t)] \pm E[X(t+\tau)X(t)]$$

$$= 2\phi_{XX}(0) \pm 2\phi_{XX}(\tau) .$$

Therefore,

$$\pm \phi_{XX}(\tau) \leq \phi_{XX}(0)$$
$$|\phi_{XX}(\tau)| \leq \phi_{XX}(0) .$$