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✫
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✪

Ergodic Random Processes

An ergodic random process is one where time averages are equal to ensemble
averages. Hence, for all g(X) and X

E[g(X)] =
∫ ∞

−∞
g(X)pX(t)(x)dx

= lim
T→∞

1

2T

∫ T

−T
g[X(t)]dt

= < g[X(t)] >

For a random process to be ergodic, it must be strictly stationary. However, not
all strictly stationary random processes are ergodic.

A random process is ergodic in the mean if

< X(t) > = µX

and ergodic in the autocorrelation if

< X(t)X(t+ τ) > = φXX(τ)
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✫

✩

✪

Example (cont’d)

Recall the random process

X(t) = A cos(2πfct+Θ)

where A and fc are constants, and Θ is assumed to be a uniformly distributed
random phase having the pdf

pΘ(θ) =







1/(2π) , 0 ≤ θ ≤ 2π
0 , elsewhere

The time average mean of X(t) is

< X(t) >= lim
T→∞

1

2T

∫ T

−T
A cos(2πfct+ θ)dt = 0

In this example µX(t) = E[X(t)] =< X(t) >= 0, so the random process X(t) is
ergodic in the mean.

N.B. Make sure you understand the difference between the time average and
ensemble average.
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✪

Example (cont’d)

The time average autocorrelation of X(t) is

< X(t)X(t+ τ) > = lim
T→∞

1

2T

∫ T

−T
A2 cos(2πfct+ 2πfcτ + θ) cos(2πfct+ θ)dt

= lim
T→∞

A2

4T

∫ T

−T
[cos(2πfcτ) + cos(4πfct+ 2πfcτ + 2θ)] dt

=
A2

2
cos(2πfcτ)

In this example φX(τ) = E[X(t)X(t+ τ)] = < X(t)X(t+ τ) >, so the random
process X(t) is ergodic in the autocorrelation.

It follows that the random process X(t) in this example is ergodic in the mean
and autocorrelation.
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Example

Consider the random process shown below.

X (t) = a P   = 1/4

P   = 1/4

X (t) = 0 P   = 1/2

X (t) = -a

1 1

22

3 3
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✫

✩

✪

Example (cont’d)

For this example, the ensemble and time average means are, respectively,

µX = E[X(t)] = 0

〈X(t)〉 =



















a with probability 1/4
0 with probability 1/2

−a with probability 1/4

Hence, X(t) is not ergodic in the mean.

The ensemble and time average autocorrelations are

φXX(τ) = E[X(t)X(t+ τ)] = a2(1/4) + 0(1/2) + (−a)2(1/4) = a2/2

〈X(t)X(t + τ)〉 =







a2 with probability 1/2
0 with probability 1/2

Hence, X(t) is not ergodic in the autocorrelation.
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Example (cont’d)

Note that

E[〈X(t)〉] = µX

E[〈X(t)X(t+ τ)〉] = φXX(τ)

Because of this property 〈X(t)〉 and 〈X(t)X(t+ τ)〉 are said to provide unbiased
estimates of µX and φXX(τ), respectively.
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Power Spectral Density

The power spectral density (psd) of a wide sense stationary random process X(t)
is the Fourier transform of its autocorrelation function, i.e.,

ΦXX(f) = =
∫ ∞

−∞
φXX(τ)e

−j2πfτdτ

φXX(τ) =
∫ ∞

−∞
ΦXX(f)e

j2πfτdf .

We have seen that φXX(τ) is real and even. Therefore, ΦXX(−f) = ΦXX(f)

meaning that ΦXX(f) is also real and even.

The total power (ac + dc), P , in a random process X(t) is

P = E[X2(t)] = φXX(0) =
∫ ∞

−∞
ΦXX(f)df

a famous result known as Parseval’s theorem.
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✫

✩

✪

Example

X(t) = A cos(2πfct+Θ)

where A and fv are constants and

pΘ(θ) =







1
2π

, −π ≤ θ ≤ π

0 , elsewhere

We have seen before that

φXX(τ) =
A2

2
cos(2πfcτ)

Hence,

ΦXX(f) =
A2

2
F [cos(2πfcτ)]

=
A2

4
(δ(f − fc) + δ(f + fc))
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✫
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✪

Properties of ΦXX(f )

1. ΦXX(0) =
∫∞
−∞ φXX(τ)dτ

2.
∫ 0+
0− ΦXX(f)df = dc power

3. φXX(0) =
∫∞
−∞ΦXX(f)df = total power

4. ΦXX(f) ≥ 0 for all f . Power is never negative.

5. ΦXX(f) = ΦXX(−f) (even function) if X(t) is a real random process.

6. ΦXX(f) is always real.
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✫
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Discrete-time Random Processes

Consider a discrete-time real-valued random process Xn, that consists of an en-
semble of discrete-time sample sequences {xn}.
The ensemble mean of Xn is

µXn
= E[Xn] =

∫ ∞

−∞
xnfXn

(xn)dxn

The ensemble autocorrelation of Xn is

φXX(n, k) = E[XnXk] =
∫ ∞

−∞

∫ ∞

−∞
XnXkfXn,Xk

(xn, xk)dxndxk

For a wide-sense stationary discrete-time real-valued random process, we have

µXn
= µX , ∀n

φXX(n, k) = φXX(n− k)

From Parseval’s theorem, the total power in the process Xn is

P = E[X2
n] = φXX(0)
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✫

✩
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Power Spectrum of Discrete-time RP

The power spectrum of the real-valued wide-sense stationary discrete-time ran-
dom process Xn is the discrete-time Fourier transform of its autocorrelation

function, i.e.,

ΦXX(f) =
∞
∑

n=−∞
φXX(n)e

−j2πfn

φXX(n) =
∫ 1/2

−1/2
ΦXX(f)e

j2πfndf

Observe that the power spectrum ΦXX(f) is periodic in frequency f with a
period of unity. In other words ΦXX(f) = ΦXX(f + k), for k = ±1,±2, . . . This

is a characteristic of any discrete-time sequence. For example, one obtained by
sampling a continuous-time random process Xn = x(nTs), where Ts is the sample

period.
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Linear Systems
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✫

✩

✪

Linear Systems

Suppose that the input to the linear system (filter) h(t) is a wide sense stationary
random process X(t), with mean µX and autocorrelation φXX(τ).

The input and output waveforms are related by the convolution integral

Y (t) =
∫ ∞

−∞
h(τ)X(t− τ)dτ .

Hence,
Y (f) = H(f)X(f) .

The output mean is

µY =
∫ ∞

−∞
h(τ)E[X(t− τ)]dτ = µX

∫ ∞

−∞
h(τ)dτ = µXH(0) .

The mean value of the filter output (dc output) is just the mean value of the
filter input (dc input) multiplied by the dc gain of the filter.
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✫

✩

✪

Linear Systems

The output autocorrelation is

φY Y (τ) = E[Y (t)Y (t+ τ)]

= E
[
∫ ∞

−∞
h(β)X(t− β)dβ

∫ ∞

−∞
h(α)X(t+ τ − α)dα

]

=
∫ ∞

−∞

∫ ∞

−∞
h(α)h(β)E [X(t− β)X(t+ τ − α)] dβdα

=
∫ ∞

−∞

∫ ∞

−∞
h(α)h(β)φXX(τ − α + β)dβdα

=
∫ ∞

−∞
h(α)

∫ ∞

−∞
h(β)φXX(τ + β − α)dαdβ

=
{
∫ ∞

−∞
h(β)φXX(τ + β)dβ

}

∗ h(τ)

= h(−τ) ∗ φXX(τ) ∗ h(τ) .

Taking transforms, the output psd is

ΦY Y (f) = H∗(f)ΦXX(f)H(f)

= |H(f)|2ΦXX(f) .
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✫

✩

✪

Cross-correlation and Cross-covariance

If X(t) and Y (t) are each wide sense stationary and jointly wide sense stationary,
then

φXY (t, t+ τ) = E[X(t)Y (t+ τ)] = φXY (τ)

µXY (t, t+ τ) = µXY (τ) = φXY (τ)− µxµy

The crosscorrelation function φXY (τ) has the following properties.

1. φXY (τ) = φY X(−τ)

2. |φXY (τ)| ≤
1
2[φXX(0) + φY Y (0)]

3. |φXY (τ)|
2 ≤ φXX(0)φY Y (0) if X(t) and Y (t) have zero mean.
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✫

✩

✪

Example

Consider the linear system shown in the previous example. The crosscorrelation
between the input process X(t) and the output process Y (t) is

φY X(τ) = E[Y (t)X(t+ τ)]

= E
[
∫ ∞

−∞
h(α)X(t− α)dαX(t+ τ)

]

=
∫ ∞

−∞
h(α)E [X(t− α)X(t+ τ)] dα

=
∫ ∞

−∞
h(α)φXX(τ + α)dα

= h(−τ) ∗ φXX(τ)

The cross power spectral density is

ΦY X(f) = H∗(f)ΦXX(f)

Note also that

φY X(−τ) = φXY (τ)
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Example

R

CX(t) Y(t)
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✫

✩

✪

Example

The transfer function of the filter is

H(f) =
1

1 + j2πfRC

Suppose X(t) has autocorrelation function φXX(τ) = e−α|τ |. What is φY Y (τ)?

We have
ΦY Y (f) = |H(f)|2ΦXX(f)

where

|H(f)|2 =
1

1 + (2πfRC)2

ΦXX(f) =
2α

α2 + (2πf)2

Hence,

ΦY Y (f) =
1

1 + (2πfRC)2
·

2α

α2 + (2πf)2
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✬

✫

✩

✪

Example

Do you remember partial fractions? Now you need them!
We write

ΦY Y (f) =
A

α2 + (2πf)2
+

B

1 + (2πfRC)2

and solve for A and B. We have

A(1 + (2πfRC)2) + B(α2 + (2πf)2) = 2α

Clearly,

A+ Bα2 = 2α

A(2πfRC)2 +B(2πf)2 = 0

From the second equation

A = −
B

(RC)2
= −Bβ2

where β = 1/(RC).
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✫

✩

✪

Example

Then using the first equation

B =
2α

α2 − β2

Also,

A = −Bβ2 = −
2αβ2

α2 − β2

Finally,

ΦY Y (f) =
β2

β2 − α2
·

2α

α2 + (2πf)2
+

αβ

α2 − β2
·

2β

β2 + (2πf)2

Now take inverse Fourier transforms to get

φY Y (τ) =
β2

β2 − α2
· e−α|τ | +

αβ

α2 − β2
· e−β|τ |
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✫
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✪

Discrete-time Random Processes

Consider a wide-sense stationary discrete-time random process Xn that is input
to a discrete-time linear time-invariant filter having impulse response hn. The
frequency response function of the filter is the discrete time Fourier transform

H(f) =
∞
∑

n=−∞
hne

−j2πfn

The output of the filter is the convolution sum

Yk =
∞
∑

n=−∞
hnXk−n

It follows that the output mean is

µY = E[Yk] =
∞
∑

n=−∞
hnE[Xk−n]

= µX

∞
∑

n=−∞
hn

= µXH(0)
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✫

✩

✪

Discrete-time Random Processes

The autocorrelation function of the output process is

φY Y (k) = E[YnYn+k]

=
∞
∑

i=−∞

∞
∑

j=−∞

hihjE[Xn−ihjXn+k−j]

=
∞
∑

i=−∞

∞
∑

j=−∞

hihjφXX(k − j + i)]

By taking the discrete-time Fourier transform of φY Y (k) and using the above

relationship, we can obtain

ΦY Y (f) = ΦXX(f)|H(f)|2

Again, note in this case that ΦY Y (f) is periodic in f with a period of unity.
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