EE4601
Communication Systems

Week 5
Noise and Matched Filters

Error Probability with Binary Signaling
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g Thermal Noise A

Thermal noise affect all communication receivers.

From fundamental physics (which we will not go into here) the power spectral
density of thermal noise is

h|f]
2 (ehlfl/kT — 1)

D, (f) = watts/Hz

where

h = 6.62 x 107** Joules = Plank’s constant

k = 1.37 x 107* Joules/degree = Boltzmann’s constant

Using the Taylor series expansion e* = 1 + x + 2%/2! + 23/3! + - - - gives

h|f]
21+ h|f[/kT — 1)

kT
= 5 watts/Hz

Cun(f) =~
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White Noise

12
0 10 Hz

Over a narrow bandwidth of frequencies the noise spectral density can be con-
sidered “flat”
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g White Noise A

If we assume the bandwidth W is infinite (idealization), then the autocorrelation
function of the zero-mean additive white Gaussian noise is

Bunlr) = 7 (N,/2) = 225(r)

where we use a subscript "w” to emphasize that the noise is white.
Observe that w(t) is uncorrelated with w(t + 7) and since Gaussian, statistically
independent for any 7 # 0.

The noise power in bandwidth W is

N,
Pn:2><W><7:NOW watts
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Filtered White Noise

w(t)

If the input noise spectral density is @, (f) = N,/2, then the output noise
spectral density is

B (/) = S 1H ()

For example, consider the ideal low-pass filter

_ FY_ L flsw
H{(f) = rect <W> a { 0, elsewhere
Then N F
O, (f) = Torect (ﬁ)
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g Filtered White Noise A

The autocorrelation function of the ideal low-pass filtered noise is

N, :
Onn(T) = 72Wsmc(2W7')

= N,Wsinc(2W )
¢nn(7_>
N N
3 1. 13T
2W W 2w W W 2W

Observe that samples of n(t) taken 1/(2W) seconds apart, or any multiple of
\1/(2W) seconds are uncorrelated. If the noise is Gaussian, then the samples are/
statistically independent.
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Bandpass Filtered White Noise A

2 2W
-0
H(f) = rect (f - fc) -+ rect <f2;/ fc>
Bunf) = 2 freet (L) tveer (LHF)
bun() = S 2Wsinc(2WT) - 2cos2r i

= 2N,Wsinc(2WrT) - cos 2 f.1
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-
Noise Equivalent Bandwidth A

Consider an arbitatry filter with tranfer function H(f). If the input to the filter
is white noise with power spectral density N,/2, then the noise power at the
output of the filter is

N, oo
Nout = 7/_OO|H(f>|2df
= N, [ [H(f)Pdf

Next suppose that the same noise process is applied to an ideal low-pass filter
with bandwidth B and zero frequency response H(0). The noise at the output
of the filter is

Now = N,BH?*(0)

Equating the above two equations give the noise equivalent bandwdith

R H )P
B=""10)

\ /
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: Basic Problem A

A pulse ¢(t) is transmitted over a noisy channel, representing a “0” or “1”. The
pulse is assumed to have duration 7.

g(t) A g(t)
A o) A

a®) X(t) yo < y(T)

+ h(t) {
\f T
w(t)

white Gaussian noise

(I)ww(f) - %

Given the knowledge of ¢(t), how do we choose h(t) to minimize the effects of
noise?

\ /
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Matched Filter

where

n(t) = w(t)* h(t)

We wish to maximize the peak pulse signal-to-noise ratio

_ 190(T)]* _ instantaneous signal power

~ E[n%(T)]  average noise power

where T' = sampling instant.
We have (I)nn(f) = ‘H(f)P(bww(f) = %‘H(f)P

BT = 60) = [~ @0 (Hdf =20 [ |H(Pdf
6(T) = [~ GUH(f)e” T df
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Matched Filter

Then,
|J°° G(f)H(f)e”* T df|?
5125 [H (f)[Pdf
Choose H(f) to maximize 7.
Apply the Schwartz inequality
[ a(DuhdfP < [ La(H)Pdf [ ly(f)1df

with equality iff z(f ) = ky*(f), k - arbitrary scalar constant
Hence,

[ atnanS i < [T el [T

—0o0

and
n<—/ P

Since the RHS does not depend on H(f), we maximize i by choosing

-

Hopi(f) = kG*(f)e ™21 & kg(T —t) = hop(t)
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: Matched Filter

This gives

2 oo 9
s = 3~ | IGUPdf =
Recall Rayleigh’s energy theorem
E=["|gldt= [~ |G(f)Pdf
Example: ¢g(t) = Aup(t) = A(u(t) —u(t —=T))

N,/2

A

9(v
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Matched Filter
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-
Binary Signaling

Antipodal signaling

1 = g(t)
0 = —g(t)
decision device
9(t) X(t) » ye) <y decide 1if y(T) > 0
-3?0 O T T decide 0if y(T) <0
h(t) = g(T-t)
w(t)

Assume ¢(t) was sent, i.e., ‘1’ was sent

Note
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Binary Signaling

y(T) = /Tx(&)h(T—&)d&

= / l9(a (@)da
:/0 () da+/ )g(a)da
= F4+w=y

w is a Gaussian random variable with mean and variance

E[w] = E /()Tw(a)g(oz)doz] — [" Elw(@)g(a)da = 0
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Binary Signaling

o2 = [ [ dunla — Bgla)g(B)dads
= 20 [T S~ Bgla)g(B)dads

N, (T , _ N,E
= 5 /0 g°()da = 5
Therefore, given that ‘1’ was sent, y = y(7') has the conditional pdf

1 —(y—E)° 2
V2moy, exp{ 202 booow= 2

Likewise, given that ‘0’ was sent, y = y(7T') has the conditional pdf

—(y + E)? a
\/%O'w eXp{ 20_120 }7 Ow - 2

fy|‘1’(y|‘1/) ~ N(EvNoE/Z) =

ol (y['0") ~ N(=E, NoE/2) =
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Probability of Error

03-Oct-1998

)

fyo® fyu®)
—E A=0 E
cls Zoarm! | il
Pe = €|1/P(1)+P€|O/P(
= P(y < 0|1)

g

Y
AR

Qf P(‘1") # P(‘0), then A = 0 does not yield the smallest P.,. Y.
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Probability of Error

5
E,/N, (dB)

10
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Example: On-Off keying

Let ‘1" — g(¢)

‘0 — 0 transmit nothing

As before we use a filter matched to g(t) and sample the output
If ‘1’ is sent then

y = E+w w~ N(0,N,E/2)
fypr ~ N(E,N,E/2)
If ‘0’ is sent then

y = 0+w w~ N(0,N,E/2)
fyro ~ N(O,NoE/2)
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On-Off Keying

f0)

ylo
)

slicer'\thyeshold

For equally likely binary singnals, the optimum slicer threshold (minizes P,) is
where the conditional pdfs cross. In this case A = E/2.

P. = PyyP(1) + Py P(0)
= P(y < E/2|'1)P(‘1') + P(y > E/2|'0)P(‘0')

- (wn)s ()

ol ol

\E=E /2 - average bit energy /
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On-Off Keying

P.=Q < m) for On-Off keying Recall P, = @) <\/?VE) for antipodal signals

10°

107

10 ¢

OOK
%0k

antipodal

10k

10 F

10°

6 8 10 12 14
E/N, (dB)
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