EE4601 Communication Systems

Week 6 Orthogonal Expansions

Basic Problem

Problem:

Suppose that we have a set of M finite energy signals $S = \{s_1(t), s_2(t), \dots, s_M(t)\}$, where each signal has a duration T seconds.

Every T seconds one of the waveforms from the set S is selected for transmission over an AWGN channel. The transmitted waveform is

$$x(t) = \sum_{n} s_n(t - nT)$$

The received noise corrupted waveform is

$$r(t) = \sum_{n} s_n(t - nT) + n(t)$$

By observing r(t) we wish to determine the *time sequence* of waveforms $\{s_n(t)\}$ that was transmitted. That is, in each T second interval, we must determine which $s_i(t) \in S$ was transmitted.

⁰©2011, Georgia Institute of Technology (lect6_2)

Orthogonal Expansions

Consider a real valued signal s(t) with finite energy E_s ,

$$E_s = \int_{-\infty}^{\infty} s^2(t)dt$$

Suppose there exists a set of orthornormal functions $\{f_n(t)\}, n = 1, ..., N$. By orthornormal we mean

$$\int_{-\infty}^{\infty} f_n(t) f_k(t) dt = \delta_{kn} \qquad \delta_{kn} = \begin{cases} 1 & , & k = n \\ 0 & , & k \neq n \end{cases}$$

We now approximate s(t) as the weighted linear sum

$$\hat{s}(t) = \sum_{k=1}^{N} s_k f_k(t)$$

and wish to determine the $s_k, k = 1, ..., N$ to minimize the square error

$$\varepsilon = \int_{-\infty}^{\infty} (s(t) - \hat{s}(t))^2 dt$$
$$= \int_{-\infty}^{\infty} \left(s(t) - \sum_{k=1}^{N} s_k f_k(t) \right)^2 dt$$

⁰©2011, Georgia Institute of Technology (lect6_3)

Orthogonal Expansions

To minimize the mean square error, we take the partial derivative with respect to each of the s_k and set equal to zero, i.e., for the *n*th term we solve

$$\frac{\partial \varepsilon}{\partial s_n} = 2 \int_{-\infty}^{\infty} \left(s(t) - \sum_{k=1}^{N} s_k f_k(t) \right) f_n(t) dt = 0.$$

Using the orthonormal property of the basis functions, $s_n = \int_{-\infty}^{\infty} s(t) f_n(t) dt$ and

$$\varepsilon = \int_{-\infty}^{\infty} \left(s(t) - \sum_{k=1}^{N} s_k f_k(t) \right)^2 dt$$

$$= \int_{-\infty}^{\infty} s^2(t) dt - 2 \int_{-\infty}^{\infty} s(t) \sum_{k=1}^{N} s_k f_k(t) dt + \int_{-\infty}^{\infty} \sum_{k=1}^{N} s_k f_k(t) \sum_{\ell=1}^{N} s_{\ell} f_{\ell}(t) dt$$

$$= \int_{-\infty}^{\infty} s^2(t) dt - 2 \sum_{k=1}^{N} s_k \int_{-\infty}^{\infty} s(t) f_k(t) dt + \sum_{k=1}^{N} \sum_{\ell=1}^{N} s_k s_{\ell} \int_{-\infty}^{\infty} f_k(t) f_{\ell}(t) dt$$

$$= E_s - \sum_{k=1}^{N} s_k^2$$

For a complete set of basis functions $\varepsilon = 0$.

⁰©2011, Georgia Institute of Technology (lect6_4)

Suppose that we have a set of finite energy real signals $\{s_i(t)\}, i = 1, ..., M\}$. We wish to obtain a *complete* set of orthonormal basis functions for the signal set. This can be done in 2 steps.

Step1: Determine if the set of waveforms is linearly independent. If they are linearly dependent, then there exists a set of coefficients a_1, a_2, \ldots, a_M , not all zero, such that

$$a_1s_1(t) + a_2s_2(t) + \dots + a_Ms_M(t) = 0.$$

Suppose, without loss of generality, that $a_M \neq 0$. If $a_M = 0$, then the signal set can be permuted so that $a_M \neq 0$. Then

$$s_M(t) = -\left(\frac{a_1}{a_M}s_1(t) + \frac{a_2}{a_M}s_2(t) + \dots + \frac{a_{M-1}}{a_M}s_M(t)\right).$$

Next consider the reduced signal set $\{s_i(t)\}_{i=1}^{M-1}$. If this set of waveforms is linearly dependent, then there exists another set of co-efficients $\{b_i\}_{i=1}^{M-1}$, not all zero, such that

$$b_1s_1(t) + b_2v_2(t) + \cdots + b_{M-1}s_{M-1}(t) = 0$$
.

⁰©2011, Georgia Institute of Technology (lect6_5)

We continue until a set $\{s_i(t)\}_{i=1}^N$ of linearly independent waveforms is obtained. Note that $N \leq M$ with equality if and only if the set of waveforms $\{s_i(t)\}_{i=1}^M$ is linearly independent.

If N < M, then the set of linearly independent waveforms $\{s_i(t)\}_{i=1}^N$ is not unique, but any one will do.

Step 2: From the set $\{s_i(t)\}_{i=1}^N$ construct the set of N orthonormal basis functions $\{f_i(t)\}_{i=1}^N$ as follows. First, let

$$f_1(t) = \frac{s_1(t)}{\sqrt{E_1}}$$

where E_1 is the energy in the waveform $s_1(t)$, given by

$$E_1 = \int_0^T s_1^2(t) dt$$

Then

$$s_1(t) = \sqrt{E_1} f_1(t) = s_{11} f_1(t)$$

where $s_{11} = \sqrt{E_1}$.

⁰©2011, Georgia Institute of Technology (lect6_6)

Next, by using the waveform $s_2(t)$ we obtain

$$s_{21} = \int_0^T s_2(t) f_1(t) dt$$

along with the intermediate function

$$g_2(t) = s_2(t) - s_{21}f_1(t)$$

Note that $g_2(t)$ is orthogonal to $f_1(t)$.

The second basis function is

$$f_2(t) = \frac{g_2(t)}{\sqrt{\int_0^T (g_2(t))^2 dt}}$$
$$= \frac{s_2(t) - s_{21} f_1(t)}{\sqrt{E_2 - s_{21}^2}}$$

 $^{^0 @ 2011,}$ Georgia Institute of Technology (lect6_7)

Continuing in the above fashion, we define the ith intermediate function

$$g_i(t) = s_i(t) - \sum_{j=1}^{i-1} s_{ij} f_j(t)$$

where

$$s_{ij} = \int_0^T s_i(t) f_j(t) dt$$

The set of functions

$$f_i(t) = \frac{g_i(t)}{\sqrt{\int_0^T (g_i(t))^2}}$$
 $i = 1, 2, \dots, N$

is the required set of complete orthonormal basis functions.

⁰©2011, Georgia Institute of Technology (lect6_8)

We can now write the signals as weighted linear combinations of the basis functions, i.e.,

$$s_{1}(t) = s_{11}f_{1}(t)$$

$$s_{2}(t) = s_{21}f_{1}(t) + s_{22}f_{2}(t)$$

$$s_{3}(t) = s_{31}f_{1}(t) + s_{32}f_{2}(t) + f_{33}f_{3}(t)$$

$$\vdots = \vdots$$

$$s_{N}(t) = s_{N1}f_{1}(t) + \dots + s_{NN}f_{N}(t)$$

For the remaining signals $s_i(t)$, i = N + 1, ..., M, we have

$$s_i(t) = \sum_{k=1}^{N} s_{ik} f_k(t)$$

where

$$s_{ik} = \int_0^T s_i(t) f_k(t) dt$$

⁰©2011, Georgia Institute of Technology (lect6_9)

Signal Vectors

It follows that the signal set $s_i(t)$, $i=1,\ldots,M$ can be expressed in terms of a set of signal vertors \mathbf{s}_i , $i=1,\ldots,M$ in an N-dimensional signal space, i.e.,

$$s_1(t) \leftrightarrow \mathbf{s}_1 = (s_{11}, s_{12}, \dots, s_{1N})$$

$$s_2(t) \leftrightarrow \mathbf{s}_2 = (s_{21}, s_{22}, \dots, s_{2N})$$

$$\vdots = \vdots$$

$$s_M(t) \leftrightarrow \mathbf{s}_M = (s_{M1}, s_{M2}, \dots, s_{MN})$$

⁰©2011, Georgia Institute of Technology (lect6_10)

Step 1: This signal set is not linearly independent because

$$s_4(t) = s_1(t) + s_3(t)$$

Therefore, we will use $s_1(t)$, $s_2(t)$, and $s_3(t)$ to obtain the complete orthonormal set of basis functions.

Step 2:

a)

$$E_1 = \int_0^T s_1^2(t)dt = T/3$$

$$f_1(t) = \frac{s_1(t)}{\sqrt{E_1}} = \begin{cases} \sqrt{3/T} &, & 0 \le t \le T/3 \\ 0 &, & \text{else} \end{cases}$$

⁰©2011, Georgia Institute of Technology (lect6_11)

b)

$$s_{21} = \int_0^T s_2(t) f_1(t) dt$$
$$= \int_0^{T/3} \sqrt{3/T} dt = \sqrt{T/3}$$
$$E_2 = \int_0^T s_2^2(t) dt = 2T/3$$

$$f_2(t) = \frac{s_2(t) - s_{21}f_1(t)}{\sqrt{E_2 - s_{21}^2}}$$

$$= \begin{cases} \sqrt{3/T} , & T/3 \le t \le 2T/3 \\ 0 , & \text{else} \end{cases}$$

 $^{^0 @ 2011,}$ Georgia Institute of Technology (lect6_12)

c)

$$s_{31} = \int_0^T s_3(t) f_1(t) dt = 0$$

$$s_{32} = \int_0^T s_3(t) f_2(t) dt$$

$$= \int_{T/3}^{2T/3} \sqrt{3/T} dt = \sqrt{T/3}$$

$$g_3(t) = s_3(t) - s_{31}f_1(t) - s_{32}f_2(t)$$

= $\begin{cases} 1, & 2T/3 \le t \le T \\ 0, & \text{else} \end{cases}$

$$f_3(t) = \frac{g_3(t)}{\sqrt{\int_0^T g_3^2(t)dt}}$$

$$= \begin{cases} \sqrt{3/T} , & 2T/3 \le t \le T \\ 0 , & \text{else} \end{cases}$$

⁰©2011, Georgia Institute of Technology (lect6_13)

 $^{^0 \}overline{ \odot 2011},$ Georgia Institute of Technology (lect
6_14)

$$s_1(t) \leftrightarrow \mathbf{s}_1 = (\sqrt{T/3}, 0, 0)$$

$$s_2(t) \leftrightarrow \mathbf{s}_2 = (\sqrt{T/3}, \sqrt{T/3}, 0)$$

$$s_3(t) \leftrightarrow \mathbf{s}_3 = (0, \sqrt{T/3}, \sqrt{T/3})$$

$$s_4(t) \leftrightarrow \mathbf{s}_4 = (\sqrt{T/3}, \sqrt{T/3}, \sqrt{T/3})$$

 $^{^0 @ 2011,}$ Georgia Institute of Technology (lect6_15)

Properties of Signal Vectors

Signal Energy:

$$E = \int_0^T s^2(t)dt$$

$$= \int_0^T \sum_{k=1}^N s_k f_k(t) \sum_{\ell=1}^N s_\ell f_\ell dt$$

$$= \sum_{k=1}^N \sum_{\ell=1}^N s_k s_\ell \int_0^T f_k(t) f_\ell(t) dt$$

$$= \sum_{k=1}^N s_k^2$$

$$\triangleq \|\mathbf{s}\|^2$$

The energy in s(t) is just the squared length of its signal vector \mathbf{s} .

⁰©2011, Georgia Institute of Technology (lect6_16)

Properties of Signal Vectors

Signal Correlation: The correlation or "similarity" between two signals $s_j(t)$ and $s_k(t)$ is

$$\rho_{jk} = \frac{1}{\sqrt{E_j E_k}} \int_0^T s_j(t) s_k(t) dt$$

$$= \frac{1}{\sqrt{E_j E_k}} \int_0^T \sum_{n=1}^N s_{jn} f_n(t) \sum_{m=1}^N s_{km} f_m(t) dt$$

$$= \frac{1}{\sqrt{E_j E_k}} \sum_{n=1}^N \sum_{m=1}^N s_{jn} s_{km} \int_0^T f_n(t) f_m(t) dt$$

$$= \frac{1}{\sqrt{E_j E_k}} \sum_{n=1}^N s_{jn} s_{kn}$$

$$= \frac{s_j \cdot s_k}{\|\mathbf{s}_j\| \|\mathbf{s}_k\|}$$

Note that

$$\rho = \begin{cases} 0 &, & \text{if } s_j(t) \text{ and } s_k(t) \text{ are orthogonal} \\ \pm 1 &, & \text{if } s_j(t) = \pm s_k(t) \end{cases}$$

⁰©2011, Georgia Institute of Technology (lect6_17)

Properties of Signal Vectors

Euclidean Distance: The Euclidean distance between two signals $s_j(t)$ and $s_k(t)$ is

$$d_{jk} = \left\{ \int_{0}^{T} (s_{j}(t) - s_{k}(t))^{2} dt \right\}^{1/2}$$

$$= \left\{ \int_{0}^{T} \left(\sum_{n=1}^{N} s_{jn} f_{n}(t) - \sum_{m=1}^{N} s_{km} f_{m}(t) \right)^{2} dt \right\}^{1/2}$$

$$= \left\{ \sum_{n=1}^{N} (s_{jn} - s_{kn})^{2} \right\}^{1/2}$$

$$= \left\{ \|\mathbf{s}_{j} - \mathbf{s}_{k}\|^{2} \right\}^{1/2}$$

$$= \|\mathbf{s}_{j} - \mathbf{s}_{k}\|$$

⁰©2011, Georgia Institute of Technology (lect6_18)

Consider the earlier example where

$$\mathbf{s}_1 = (\sqrt{T/3}, 0, 0)$$

 $\mathbf{s}_2 = (\sqrt{T/3}, \sqrt{T/3}, 0)$
 $\mathbf{s}_3 = (0, \sqrt{T/3}, \sqrt{T/3})$

We have $E_1 = ||\mathbf{s}_1||^2 = T/3$, $E_2 = ||\mathbf{s}_2||^2 = 2T/3$, and $E_3 = ||\mathbf{s}_3||^2 = 2T/3$. The correlation between $s_2(t)$ and $s_3(t)$ is

$$\rho_{23} = \frac{\mathbf{s}_2 \cdot \mathbf{s}_3}{\|\mathbf{s}_2\| \|\mathbf{s}_3\|} = \frac{T/3}{2T/3} = 0.5$$

The Euclidean distance between $s_1(t)$ and $s_3(t)$ is

$$d_{13} = \|\mathbf{s}_1 - \mathbf{s}_3\| = \sqrt{T/3 + T/3 + T/3} = \sqrt{T}$$

⁰©2011, Georgia Institute of Technology (lect6_19)