EE4601
 Communication Systems

Week 6
Orthogonal Expansions

[^0]
Basic Problem

Problem:

Suppose that we have a set of M finite energy signals $S=\left\{s_{1}(t), s_{2}(t), \ldots, s_{M}(t)\right\}$, where each signal has a duration T seconds.

Every T seconds one of the waveforms from the set S is selected for transmission over an AWGN channel. The transmitted waveform is

$$
x(t)=\sum_{n} s_{n}(t-n T)
$$

The received noise corrupted waveform is

$$
r(t)=\sum_{n} s_{n}(t-n T)+n(t)
$$

By observing $r(t)$ we wish to determine the time sequence of waveforms $\left\{s_{n}(t)\right\}$ that was transmitted. That is, in each T second interval, we must determine which $s_{i}(t) \in S$ was transmitted.

[^1]
Orthogonal Expansions

Consider a real valued signal $s(t)$ with finite energy E_{s},

$$
E_{s}=\int_{-\infty}^{\infty} s^{2}(t) d t
$$

Suppose there exists a set of orthornormal functions $\left\{f_{n}(t)\right\}, n=1, \ldots, N$. By orthornormal we mean

$$
\int_{-\infty}^{\infty} f_{n}(t) f_{k}(t) d t=\delta_{k n} \quad \delta_{k n}= \begin{cases}1, & k=n \\ 0, & k \neq n\end{cases}
$$

We now approximate $s(t)$ as the weighted linear sum

$$
\hat{s}(t)=\sum_{k=1}^{N} s_{k} f_{k}(t)
$$

and wish to determine the $s_{k}, k=1, \ldots, N$ to minimize the square error

$$
\begin{aligned}
\varepsilon & =\int_{-\infty}^{\infty}(s(t)-\hat{s}(t))^{2} d t \\
& =\int_{-\infty}^{\infty}\left(s(t)-\sum_{k=1}^{N} s_{k} f_{k}(t)\right)^{2} d t
\end{aligned}
$$

[^2]
Orthogonal Expansions

To minimize the mean square error, we take the partial derivative with respect to each of the s_{k} and set equal to zero, i.e., for the nth term we solve

$$
\frac{\partial \varepsilon}{\partial s_{n}}=2 \int_{-\infty}^{\infty}\left(s(t)-\sum_{k=1}^{N} s_{k} f_{k}(t)\right) f_{n}(t) d t=0
$$

Using the orthonormal property of the basis functions, $s_{n}=\int_{-\infty}^{\infty} s(t) f_{n}(t) d t$ and

$$
\begin{aligned}
\varepsilon & =\int_{-\infty}^{\infty}\left(s(t)-\sum_{k=1}^{N} s_{k} f_{k}(t)\right)^{2} d t \\
& =\int_{-\infty}^{\infty} s^{2}(t) d t-2 \int_{-\infty}^{\infty} s(t) \sum_{k=1}^{N} s_{k} f_{k}(t) d t+\int_{-\infty}^{\infty} \sum_{k=1}^{N} s_{k} f_{k}(t) \sum_{\ell=1}^{N} s_{\ell} f_{\ell}(t) d t \\
& =\int_{-\infty}^{\infty} s^{2}(t) d t-2 \sum_{k=1}^{N} s_{k} \int_{-\infty}^{\infty} s(t) f_{k}(t) d t+\sum_{k=1}^{N} \sum_{\ell=1}^{N} s_{k} s_{\ell} \int_{-\infty}^{\infty} f_{k}(t) f_{\ell}(t) d t \\
& =E_{s}-\sum_{k=1}^{N} s_{k}^{2}
\end{aligned}
$$

For a complete set of basis functions $\varepsilon=0$.

[^3]
Gram-Schmidt Orthonormalization

Suppose that we have a set of finite energy real signals $\left.\left\{s_{i}(t)\right\}, i=1, \ldots, M\right\}$. We wish to obtain a complete set of orthonormal basis functions for the signal set. This can be done in 2 steps.
Step1: Determine if the set of waveforms is linearly independent. If they are linearly dependent, then there exists a set of coefficients $a_{1}, a_{2} \ldots, a_{M}$, not all zero, such that

$$
a_{1} s_{1}(t)+a_{2} s_{2}(t)+\cdots+a_{M} s_{M}(t)=0 .
$$

Suppose, without loss of generality, that $a_{M} \neq 0$. If $a_{M}=0$, then the signal set can be permuted so that $a_{M} \neq 0$. Then

$$
s_{M}(t)=-\left(\frac{a_{1}}{a_{M}} s_{1}(t)+\frac{a_{2}}{a_{M}} s_{2}(t)+\cdots+\frac{a_{M-1}}{a_{M}} s_{M}(t)\right) .
$$

Next consider the reduced signal set $\left\{s_{i}(t)\right\}_{i=1}^{M-1}$. If this set of waveforms is linearly dependent, then there exists another set of co-efficients $\left\{b_{i}\right\}_{i=1}^{M-1}$, not all zero, such that

$$
b_{1} s_{1}(t)+b_{2} v_{2}(t)+\cdots+b_{M-1} s_{M-1}(t)=0
$$

[^4]
Gram-Schmidt Orthonormalization

We continue until a set $\left\{s_{i}(t)\right\}_{i=1}^{N}$ of linearly independent waveforms is obtained. Note that $N \leq M$ with equality if and only if the set of waveforms $\left\{s_{i}(t)\right\}_{i=1}^{M}$ is linearly independent.
If $N<M$, then the set of linearly independent waveforms $\left\{s_{i}(t)\right\}_{i=1}^{N}$ is not unique, but any one will do.
Step 2: From the set $\left\{s_{i}(t)\right\}_{i=1}^{N}$ construct the set of N orthonormal basis functions $\left\{f_{i}(t)\right\}_{i=1}^{N}$ as follows. First, let

$$
f_{1}(t)=\frac{s_{1}(t)}{\sqrt{E_{1}}}
$$

where E_{1} is the energy in the waveform $s_{1}(t)$, given by

$$
E_{1}=\int_{0}^{T} s_{1}^{2}(t) d t
$$

Then

$$
s_{1}(t)=\sqrt{E_{1}} f_{1}(t)=s_{11} f_{1}(t)
$$

where $s_{11}=\sqrt{E_{1}}$.

[^5]
Gram-Schmidt Orthonormalization

Next, by using the waveform $s_{2}(t)$ we obtain

$$
s_{21}=\int_{0}^{T} s_{2}(t) f_{1}(t) d t
$$

along with the intermediate function

$$
g_{2}(t)=s_{2}(t)-s_{21} f_{1}(t)
$$

Note that $g_{2}(t)$ is orthogonal to $f_{1}(t)$.
The second basis function is

$$
\begin{aligned}
f_{2}(t) & =\frac{g_{2}(t)}{\sqrt{\int_{0}^{T}\left(g_{2}(t)\right)^{2} d t}} \\
& =\frac{s_{2}(t)-s_{21} f_{1}(t)}{\sqrt{E_{2}-s_{21}^{2}}}
\end{aligned}
$$

[^6]
Gram-Schmidt Orthonormalization

Continuing in the above fashion, we define the i th intermediate function

$$
g_{i}(t)=s_{i}(t)-\sum_{j=1}^{i-1} s_{i j} f_{j}(t)
$$

where

$$
s_{i j}=\int_{0}^{T} s_{i}(t) f_{j}(t) d t
$$

The set of functions

$$
f_{i}(t)=\frac{g_{i}(t)}{\sqrt{\int_{0}^{T}\left(g_{i}(t)\right)^{2}}} \quad i=1,2, \ldots, N
$$

is the required set of complete orthonormal basis functions.

[^7]
Gram-Schmidt Orthonormalization

We can now write the signals as weighted linear combinations of the basis functions, i.e.,

$$
\begin{aligned}
s_{1}(t) & =s_{11} f_{1}(t) \\
s_{2}(t) & =s_{21} f_{1}(t)+s_{22} f_{2}(t) \\
s_{3}(t) & =s_{31} f_{1}(t)+s_{32} f_{2}(t)+f_{33} f_{3}(t) \\
\vdots & =\vdots \\
s_{N}(t) & =s_{N 1} f_{1}(t)+\cdots+s_{N N} f_{N}(t)
\end{aligned}
$$

For the remaining signals $s_{i}(t), i=N+1, \ldots, M$, we have

$$
s_{i}(t)=\sum_{k=1}^{N} s_{i k} f_{k}(t)
$$

where

$$
s_{i k}=\int_{0}^{T} s_{i}(t) f_{k}(t) d t
$$

[^8]
Signal Vectors

It follows that the signal set $s_{i}(t), i=1, \ldots, M$ can be expressed in terms of a set of signal vertors $\mathbf{s}_{i}, i=1, \ldots, M$ in an N-dimensional signal space, i.e.,

$$
\begin{aligned}
s_{1}(t) \leftrightarrow \mathbf{s}_{1} & =\left(s_{11}, s_{12}, \ldots, s_{1 N}\right) \\
s_{2}(t) \leftrightarrow \mathbf{s}_{2} & =\left(s_{21}, s_{22}, \ldots, s_{2 N}\right) \\
\vdots & =\vdots \\
s_{M}(t) \leftrightarrow \mathbf{s}_{M} & =\left(s_{M 1}, s_{M 2}, \ldots, s_{M N}\right)
\end{aligned}
$$

[^9]
Example

[^10]
Example

Step 1: This signal set is not linearly independent because

$$
s_{4}(t)=s_{1}(t)+s_{3}(t)
$$

Therefore, we will use $s_{1}(t), s_{2}(t)$, and $s_{3}(t)$ to obtain the complete orthonormal set of basis functions.

Step 2:

a)

$$
\begin{aligned}
E_{1} & =\int_{0}^{T} s_{1}^{2}(t) d t=T / 3 \\
f_{1}(t)=\frac{s_{1}(t)}{\sqrt{E_{1}}} & = \begin{cases}\sqrt{3 / T}, & 0 \leq t \leq T / 3 \\
0, & \text { else }\end{cases}
\end{aligned}
$$

[^11]
Example

b)

$$
\begin{gathered}
s_{21}=\int_{0}^{T} s_{2}(t) f_{1}(t) d t \\
=\int_{0}^{T / 3} \sqrt{3 / T} d t=\sqrt{T / 3} \\
E_{2}=\int_{0}^{T} s_{2}^{2}(t) d t=2 T / 3 \\
f_{2}(t)=\frac{s_{2}(t)-s_{21} f_{1}(t)}{\sqrt{E_{2}-s_{21}^{2}}} \\
= \begin{cases}\sqrt{3 / T}, & T / 3 \leq t \leq 2 T / 3 \\
0, & \text { else }\end{cases}
\end{gathered}
$$

[^12]
Example

c)

$$
\begin{aligned}
s_{31} & =\int_{0}^{T} s_{3}(t) f_{1}(t) d t=0 \\
s_{32} & =\int_{0}^{T} s_{3}(t) f_{2}(t) d t \\
& =\int_{T / 3}^{2 T / 3} \sqrt{3 / T} d t=\sqrt{T / 3} \\
g_{3}(t) & =s_{3}(t)-s_{31} f_{1}(t)-s_{32} f_{2}(t) \\
& = \begin{cases}1, & 2 T / 3 \leq t \leq T \\
0, & \text { else }\end{cases} \\
f_{3}(t) & =\frac{g_{3}(t)}{\sqrt{\int_{0}^{T} g_{3}^{2}(t) d t}} \\
& = \begin{cases}\sqrt{3 / T}, & 2 T / 3 \leq t \leq T \\
0, & \text { else }\end{cases}
\end{aligned}
$$

[^13]
Example

[^14]
Example

$$
\begin{aligned}
& s_{1}(t) \leftrightarrow \mathbf{s}_{1}=(\sqrt{T / 3}, 0,0) \\
& s_{2}(t) \leftrightarrow \mathbf{s}_{2}=(\sqrt{T / 3}, \sqrt{T / 3}, 0) \\
& s_{3}(t) \leftrightarrow \mathbf{s}_{3}=(0, \sqrt{T / 3}, \sqrt{T / 3}) \\
& s_{4}(t) \leftrightarrow \mathbf{s}_{4}=(\sqrt{T / 3}, \sqrt{T / 3}, \sqrt{T / 3})
\end{aligned}
$$

[^15]
Properties of Signal Vectors

Signal Energy:

$$
\begin{aligned}
E & =\int_{0}^{T} s^{2}(t) d t \\
& =\int_{0}^{T} \sum_{k=1}^{N} s_{k} f_{k}(t) \sum_{\ell=1}^{N} s_{\ell} f_{\ell} d t \\
& =\sum_{k=1}^{N} \sum_{\ell=1}^{N} s_{k} s_{\ell} \int_{0}^{T} f_{k}(t) f_{\ell}(t) d t \\
& =\sum_{k=1}^{N} s_{k}^{2} \\
& \triangleq\|\mathbf{s}\|^{2}
\end{aligned}
$$

The energy in $s(t)$ is just the squared length of its signal vector \mathbf{s}.

[^16]
Properties of Signal Vectors

Signal Correlation: The correlation or "similarity" between two signals $s_{j}(t)$ and $s_{k}(t)$ is

$$
\begin{aligned}
\rho_{j k} & =\frac{1}{\sqrt{E_{j} E_{k}}} \int_{0}^{T} s_{j}(t) s_{k}(t) d t \\
& =\frac{1}{\sqrt{E_{j} E_{k}}} \int_{0}^{T} \sum_{n=1}^{N} s_{j n} f_{n}(t) \sum_{m=1}^{N} s_{k m} f_{m}(t) d t \\
& =\frac{1}{\sqrt{E_{j} E_{k}}} \sum_{n=1}^{N} \sum_{m=1}^{N} s_{j n} s_{k m} \int_{0}^{T} f_{n}(t) f_{m}(t) d t \\
& =\frac{1}{\sqrt{E_{j} E_{k}}} \sum_{n=1}^{N} s_{j n} s_{k n} \\
& =\frac{\mathbf{s}_{j} \cdot \mathbf{s}_{k}}{\left\|\mathbf{s}_{j}\right\|\left\|\mathbf{s}_{k}\right\|}
\end{aligned}
$$

Note that

$$
\rho= \begin{cases}0, & \text { if } s_{j}(t) \text { and } s_{k}(t) \text { are orthogonal } \\ \pm 1, & \text { if } s_{j}(t)= \pm s_{k}(t)\end{cases}
$$

[^17]
Properties of Signal Vectors

Euclidean Distance: The Euclidean distance between two signals $s_{j}(t)$ and $s_{k}(t)$ is

$$
\begin{aligned}
d_{j k} & =\left\{\int_{0}^{T}\left(s_{j}(t)-s_{k}(t)\right)^{2} d t\right\}^{1 / 2} \\
& =\left\{\int_{0}^{T}\left(\sum_{n=1}^{N} s_{j n} f_{n}(t)-\sum_{m=1}^{N} s_{k m} f_{m}(t)\right)^{2} d t\right\}^{1 / 2} \\
& =\left\{\sum_{n=1}^{N}\left(s_{j n}-s_{k n}\right)^{2}\right\}^{1 / 2} \\
& =\left\{\left\|\mathbf{s}_{j}-\mathbf{s}_{k}\right\|^{2}\right\}^{1 / 2} \\
& =\left\|\mathbf{s}_{j}-\mathbf{s}_{k}\right\|
\end{aligned}
$$

[^18]
Example

Consider the earlier example where

$$
\begin{aligned}
& \mathbf{s}_{1}=(\sqrt{T / 3}, 0,0) \\
& \mathbf{s}_{2}=(\sqrt{T / 3}, \sqrt{T / 3}, 0) \\
& \mathbf{s}_{3}=(0, \sqrt{T / 3}, \sqrt{T / 3})
\end{aligned}
$$

We have $E_{1}=\left\|\mathbf{s}_{1}\right\|^{2}=T / 3, E_{2}=\left\|\mathbf{s}_{2}\right\|^{2}=2 T / 3$, and $E_{3}=\left\|\mathbf{s}_{3}\right\|^{2}=2 T / 3$.
The correlation between $s_{2}(t)$ and $s_{3}(t)$ is

$$
\rho_{23}=\frac{\mathbf{s}_{2} \cdot \mathbf{s}_{3}}{\left\|\mathbf{s}_{2}\right\|\left\|\mathbf{s}_{3}\right\|}=\frac{T / 3}{2 T / 3}=0.5
$$

The Euclidean distance between $s_{1}(t)$ and $s_{3}(t)$ is

$$
d_{13}=\left\|\mathbf{s}_{1}-\mathbf{s}_{3}\right\|=\sqrt{T / 3+T / 3+T / 3}=\sqrt{T}
$$

[^19]
[^0]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_1)

[^1]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect6_2)

[^2]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect6_3)

[^3]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect6_4)

[^4]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_5)

[^5]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect6_6)

[^6]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect6_7)

[^7]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect6_8)

[^8]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect6_9)

[^9]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_10)

[^10]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_10)

[^11]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_11)

[^12]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_12)

[^13]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_13)

[^14]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_14)

[^15]: ${ }^{0}$ (C)2011, Georgia Institute of Technology (lect6_15)

[^16]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_16)

[^17]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect6_17)

[^18]: ${ }^{0}$ ⑳11, Georgia Institute of Technology (lect6_18)

[^19]: ${ }^{0}$ © 2011, Georgia Institute of Technology (lect6_19)

