EE4601
Communication Systems

Week 6 _
Orthogonal Expansions
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: Basic Problem A

Problem:

Suppose that we have a set of M finite energy signals S = {s1(t), sa(t), ..., sam(t)},
where each signal has a duration 7" seconds.

Every T seconds one of the waveforms from the set .S is selected for transmission
over an AWGN channel. The transmitted waveform is

z(t) =Y sp(t —nT)
The received noise corrupted waveform is

r(t) = zn: sp(t —nT') + n(t)

By observing r(t) we wish to determine the time sequence of waveforms {s, ()}
that was transmitted. That is, in each T second interval, we must determine
which s;(t) € S was transmitted.

\ /
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-
Orthogonal Expansions A

Consider a real valued signal s(¢) with finite energy Fi,
Eo= [~ s(t)dt

Suppose there exists a set of orthornormal functions {f,(t)},n =1,..., N. By
orthornormal we mean

[ R0 =5 b { L, k=

We now approximate s(t) as the weighted linear sum
A N
$(t) = > sefil(t)

k=1

and wish to determine the s;,k = 1,..., N to minimize the square error

e = [ (s(t)=s(t)
= [ (s - an) @

> k=1

\_
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-
Orthogonal Expansions A

To minimize the mean square error, we take the partial derivative with respect
to each of the s; and set equal to zero, i.e., for the nth term we solve

a—sn - 2/ ( - Skfk:(t)) fa(t)dt =0

Using the orthonormal property of the basis functions, s, = /%_s(t) f,(t)dt and

e = [ (s(t) —kz sufult )) dt
1
N N
— /_ t)dt — 2/ Skfk d?H‘/OO Z skfr(t )éleffe(t)dt
= /OO ( dt—QZSk/ fk dt—f—zéz:lsksé/ fk: f/ )
1

N

- Z
KFor a complete set of basis functions ¢ = 0. /
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g Gram-Schmidt Orthonormalization A

Suppose that we have a set of finite energy real signals {s;(t)},i = 1,..., M}.
We wish to obtain a complete set of orthonormal basis functions for the signal
set. This can be done in 2 steps.
Stepl: Determine if the set of waveforms is linearly independent. If they are
linearly dependent, then there exists a set of coefficients a1, as ..., ays, not all
zero, such that

alsl(t) + a252(t) + -+ CLMS]V[(t) = 0.

Suppose, without loss of generality, that ay; # 0. If aj; = 0, then the signal set
can be permuted so that ay; # 0. Then

ai as apr—1
sult) = = (1(®) + o)+ + Dy (1)
ay an an
Next consider the reduced signal set {s;(t)}X7'. If this set of waveforms is

linearly dependent, then there exists another set of co-efficients {b; ML ot all

zero, such that

\_

blsl(t) + bg?)g(t) —+ -+ b]\/[_lsj\/[_l(t) =0 . /
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g Gram-Schmidt Orthonormalization A

We continue until a set {s;(¢)}, of linearly independent waveforms is obtained.
Note that N < M with equality if and only if the set of waveforms {s;(#)}M, is
linearly independent.

If N < M, then the set of linearly independent waveforms {s;(¢)}&; is not
unique, but any one will do.

Step 2: From the set {s;(t)}Y, construct the set of N orthonormal basis func-
tions {f;(t)}}¥, as follows. First, let

1(t)

V)

fi(t) =

B

where F is the energy in the waveform s;(t), given by
T
B, = /O $2(t)dt

Then

s1(t) = VELf1(t) = s11fi(t)
where 511 = E].
N /
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Gram-Schmidt Orthonormalization

~

Next, by using the waveform s,(t) we obtain

S91 — /(;T Sg(t)fl (t)dt

along with the intermediate function

92(t) = sa(t) — s fi(t)

Note that go() is orthogonal to fi(t).
The second basis function is

fa(t) = 22lf)

Jo (ga(t))2dt
s2(t) — sa1fu(t)

VB2 — s3;
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g Gram-Schmidt Orthonormalization A

Continuing in the above fashion, we define the ith intermediate function

1—1

9i(t) = si(t) — >_ sifi(t)

j=1
where T

Sij :/o si(t) f;(t)dt
The set of functions

T /10 S P S

Vi (gi(t))?

is the required set of complete orthonormal basis functions.
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g Gram-Schmidt Orthonormalization A

We can now write the signals as weighted linear combinations of the basis func-
tions, i.e.,

si(t) = sufi(t)

so(t) = safi(t) + saafa(t)
s3(t) = ss1fi(t) + ssafolt) + fa3/3(1)

SN(t> = Slel(t) + -+ SNNfN(t>
For the remaining signals s;(t),i = N + 1,..., M, we have
N
si(t) = > sinfu(t)
k=1

where

Sik, = /OT si(t) fe(t)dt
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Signal Vectors A

It follows that the signal set s;(t),7 = 1,..., M can be expressed in terms of a
set of signal vertors s;,2 =1,..., M in an N-dimensional signal space, i.e.,
s1(t) <+ s1 = (s11,512,---,51N)
sa(t) <+ s = (s21,52,...,52N)
su(t) <> sy = (S, 5um2,- -, SMN)
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Example

5,(0)

s 2(t)

0 T/3

540

s,®

2T/3

T

0 T/3
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-
Example -

Step 1: This signal set is not linearly independent because
S4(t) = 81(t> + Sg(t)

Therefore, we will use s1(t), s2(t), and s3(t) to obtain the complete orthonormal
set of basis functions.
Step 2:

a)
T
E1:/O $2(t)dt = T/3

f1(t):51—(t):{J3/7T , 0<t<T/3

0, else
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Example
b)
sn o= [ s(t)fi(0)dt
= " arTa = VT3
By= [ si(t)dt =273
_ 8(t) — sarfi(t)
fot) = Ay
_ {\/3/7 , T/3<t<2T/3
0, else
\
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Example

c)
S31 — /(;T Sg(t)fl(t>dt:()
S32 = /T ()fz()
— [ V3Tt = T3
g3(t) = s3(t) — s31f1(t) — s32f2(t)
_ { 1, 2T/3<t<T
0, else
B g3(1)
A = fo 93()
B 3/T , 2T/3<t<T
K B {6/,7 else

0(@20117 Georgia Institute of Technology (lect6-13)




Example

0
J3T
0 T/3 T
f 3(t)
REEE
0 T/3 2T/3 T

3T

.40

T/3

2T/3

T
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t,0

81(t> — 81:( T/3,0,0
sot) & s2=(\/T/3,T/3,0)
ss(t) < s3=(0,\/T/3,\/T/3)
si(t) < si= (VT/3,JT/3,JT/3)
N %2
s

f4
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Properties of Signal Vectors

Signal Energy:

2(t)dt

&)

I
%

W

N

sifu(t) D sefe dt

(=1

SkSe /(;T fe(t) fo(t)dt
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The energy in s(t) is just the squared length of its signal vector s.
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Properties of Signal Vectors

~

Signal Correlation: The correlation or “similarity” between two signals s;(t)

and sy (t) is

Note that

\_

Pik

-

! /Ts )5 (1)dt
JEE; 10

0
+1

N
\/ﬁ/ Z Sjnfn mZ:1 Skmfm(t> dt
1
/ER 55 s | (0 (01
N
Z SjinSkn
EE =
HSjH k]|

: if 5;(t) and sy (t) are orthogonal
, i s5(t) = Esi(t)
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Properties of Signal Vectors A

Euclidean Distance: The Euclidean distance between two signals s;(t) and
Sk(t) is

2

’ﬂ

dix =

1/2

’ﬂ

{ i ) — sp(t )2dt}1/

_ {O > sjnfalt) ngjlskmfm(t))2dt}
b2
{

N 1/2
Z S]?’L Skn }

1/2
Isj — sill*}

= llsj = skl
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Example

Consider the earlier example where

51 = (VT/37070>
s, = (T/3,\/T/3,0)
s3 = (0,\T/3,yT/3)

The correlation between sy(t) and s3(t) is

So - S3 T/3

=0.5
[sallllssll — 27/3

P23 =

The Euclidean distance between s1(t) and s3(t) is

We have E1 = H81H2 = T/3, E2 = HSQH2 = 2T/3, and E3 =

s3> = 27T°/3.

diz=||s1 —s3l| = VT/3+T/3+T/3=VT
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