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EE4601
Communication Systems

Week 6
Orthogonal Expansions
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Basic Problem

Problem:

Suppose that we have a set ofM finite energy signals S = {s1(t), s2(t), . . . , sM(t)},
where each signal has a duration T seconds.

Every T seconds one of the waveforms from the set S is selected for transmission
over an AWGN channel. The transmitted waveform is

x(t) =
∑

n
sn(t− nT )

The received noise corrupted waveform is

r(t) =
∑

n
sn(t− nT ) + n(t)

By observing r(t) we wish to determine the time sequence of waveforms {sn(t)}
that was transmitted. That is, in each T second interval, we must determine
which si(t) ∈ S was transmitted.
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Orthogonal Expansions

Consider a real valued signal s(t) with finite energy Es,

Es =
∫ ∞

−∞
s2(t)dt

Suppose there exists a set of orthornormal functions {fn(t)}, n = 1, . . . , N . By
orthornormal we mean

∫ ∞

−∞
fn(t)fk(t)dt = δkn δkn =







1 , k = n

0 , k 6= n

We now approximate s(t) as the weighted linear sum

ŝ(t) =
N
∑

k=1

skfk(t)

and wish to determine the sk, k = 1, . . . , N to minimize the square error

ε =
∫ ∞

−∞
(s(t)− ŝ(t))2 dt

=
∫ ∞

−∞



s(t)−
N
∑

k=1

skfk(t)





2

dt
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Orthogonal Expansions

To minimize the mean square error, we take the partial derivative with respect
to each of the sk and set equal to zero, i.e., for the nth term we solve

∂ε

∂sn
= 2

∫ ∞

−∞



s(t)−
N
∑

k=1

skfk(t)



 fn(t)dt = 0.

Using the orthonormal property of the basis functions, sn =
∫∞
−∞ s(t)fn(t)dt and

ε =
∫ ∞

−∞



s(t)−
N
∑

k=1

skfk(t)





2

dt

=
∫ ∞

−∞
s2(t)dt− 2

∫ ∞

−∞
s(t)

N
∑

k=1

skfk(t)dt+
∫ ∞

−∞

N
∑

k=1

skfk(t)
N
∑

ℓ=1

sℓfℓ(t)dt

=
∫ ∞

−∞
s2(t)dt− 2

N
∑

k=1

sk
∫ ∞

−∞
s(t)fk(t)dt+

N
∑

k=1

N
∑

ℓ=1

sksℓ
∫ ∞

−∞
fk(t)fℓ(t)dt

= Es −
N
∑

k=1

s2k

For a complete set of basis functions ε = 0.
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Gram-Schmidt Orthonormalization

Suppose that we have a set of finite energy real signals {si(t)}, i = 1, . . . ,M}.
We wish to obtain a complete set of orthonormal basis functions for the signal
set. This can be done in 2 steps.

Step1: Determine if the set of waveforms is linearly independent. If they are
linearly dependent, then there exists a set of coefficients a1, a2 . . . , aM , not all

zero, such that
a1s1(t) + a2s2(t) + · · ·+ aMsM(t) = 0.

Suppose, without loss of generality, that aM 6= 0. If aM = 0, then the signal set
can be permuted so that aM 6= 0. Then

sM(t) = −
(

a1
aM

s1(t) +
a2
aM

s2(t) + · · ·+ aM−1

aM
sM(t)

)

.

Next consider the reduced signal set {si(t)}M−1
i=1 . If this set of waveforms is

linearly dependent, then there exists another set of co-efficients {bi}M−1
i=1 , not all

zero, such that

b1s1(t) + b2v2(t) + · · ·+ bM−1sM−1(t) = 0 .
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Gram-Schmidt Orthonormalization

We continue until a set {si(t)}Ni=1 of linearly independent waveforms is obtained.
Note that N ≤ M with equality if and only if the set of waveforms {si(t)}Mi=1 is
linearly independent.

If N < M , then the set of linearly independent waveforms {si(t)}Ni=1 is not
unique, but any one will do.

Step 2: From the set {si(t)}Ni=1 construct the set of N orthonormal basis func-
tions {fi(t)}Ni=1 as follows. First, let

f1(t) =
s1(t)√
E1

where E1 is the energy in the waveform s1(t), given by

E1 =
∫ T

0
s21(t)dt

Then

s1(t) =
√
E1f1(t) = s11f1(t)

where s11 =
√
E1.
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Gram-Schmidt Orthonormalization

Next, by using the waveform s2(t) we obtain

s21 =
∫ T

0
s2(t)f1(t)dt

along with the intermediate function

g2(t) = s2(t)− s21f1(t)

Note that g2(t) is orthogonal to f1(t).
The second basis function is

f2(t) =
g2(t)

√

∫ T
0 (g2(t))

2dt

=
s2(t)− s21f1(t)
√

E2 − s221
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Gram-Schmidt Orthonormalization

Continuing in the above fashion, we define the ith intermediate function

gi(t) = si(t)−
i−1
∑

j=1

sijfj(t)

where
sij =

∫ T

0
si(t)fj(t)dt

The set of functions

fi(t) =
gi(t)

√

∫ T
0 (gi(t))

2
i = 1, 2, , . . . , N

is the required set of complete orthonormal basis functions.
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Gram-Schmidt Orthonormalization

We can now write the signals as weighted linear combinations of the basis func-
tions, i.e.,

s1(t) = s11f1(t)

s2(t) = s21f1(t) + s22f2(t)

s3(t) = s31f1(t) + s32f2(t) + f33f3(t)
... =

...

sN(t) = sN1f1(t) + · · ·+ sNNfN(t)

For the remaining signals si(t), i = N + 1, . . . ,M , we have

si(t) =
N
∑

k=1

sikfk(t)

where
sik =

∫ T

0
si(t)fk(t)dt
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Signal Vectors

It follows that the signal set si(t), i = 1, . . . ,M can be expressed in terms of a
set of signal vertors si, i = 1, . . . ,M in an N -dimensional signal space, i.e.,

s1(t) ↔ s1 = (s11, s12, . . . , s1N)

s2(t) ↔ s2 = (s21, s22, . . . , s2N)
... =

...

sM(t) ↔ sM = (sM1, sM2, . . . , sMN)
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Example

0 T

1

0 T

1

0 T

1

0 T

1

s  (t) s  (t)

s  (t) s  (t)

1 2

3 4

T/3 2T/3

T/3
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Example

Step 1: This signal set is not linearly independent because

s4(t) = s1(t) + s3(t)

Therefore, we will use s1(t), s2(t), and s3(t) to obtain the complete orthonormal

set of basis functions.
Step 2:

a)

E1 =
∫ T

0
s21(t)dt = T/3

f1(t) =
s1(t)√
E1

=







√

3/T , 0 ≤ t ≤ T/3
0 , else
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Example

b)

s21 =
∫ T

0
s2(t)f1(t)dt

=
∫ T/3

0

√

3/Tdt =
√

T/3

E2 =
∫ T

0
s22(t)dt = 2T/3

f2(t) =
s2(t)− s21f1(t)
√

E2 − s221

=







√

3/T , T/3 ≤ t ≤ 2T/3
0 , else

0 c©2011, Georgia Institute of Technology (lect6 12)



'

&

$

%

Example

c)

s31 =
∫ T

0
s3(t)f1(t)dt = 0

s32 =
∫ T

0
s3(t)f2(t)dt

=
∫

2T/3

T/3

√

3/Tdt =
√

T/3

g3(t) = s3(t)− s31f1(t)− s32f2(t)

=







1 , 2T/3 ≤ t ≤ T
0 , else

f3(t) =
g3(t)

√

∫ T
0 g23(t)dt

=







√

3/T , 2T/3 ≤ t ≤ T
0 , else
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Example

3/T 3/T

3/T

1 2

3

T/3 2T/3

T/30 T
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Example

s1(t) ↔ s1 = (
√

T/3, 0, 0)

s2(t) ↔ s2 = (
√

T/3,
√

T/3, 0)

s3(t) ↔ s3 = (0,
√

T/3,
√

T/3)

s4(t) ↔ s4 = (
√

T/3,
√

T/3,
√

T/3)

T/3

T/3

T/3

3

1

2

f   (t)

f   (t)

f   (t)

s

s

s

s

1

2

3 4

0 c©2011, Georgia Institute of Technology (lect6 15)



'

&

$

%

Properties of Signal Vectors

Signal Energy:

E =
∫ T

0
s2(t)dt

=
∫ T

0

N
∑

k=1

skfk(t)
N
∑

ℓ=1

sℓfℓ dt

=
N
∑

k=1

N
∑

ℓ=1

sksℓ
∫ T

0
fk(t)fℓ(t)dt

=
N
∑

k=1

s2k

∆= ‖s‖2

The energy in s(t) is just the squared length of its signal vector s.
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Properties of Signal Vectors

Signal Correlation: The correlation or “similarity” between two signals sj(t)
and sk(t) is

ρjk =
1

√

EjEk

∫ T

0
sj(t)sk(t)dt

=
1

√

EjEk

∫ T

0

N
∑

n=1

sjnfn(t)
N
∑

m=1

skmfm(t) dt

=
1

√

EjEk

N
∑

n=1

N
∑

m=1

sjnskm
∫ T

0
fn(t)fm(t)dt

=
1

√

EjEk

N
∑

n=1

sjnskn

=
sj · sk

‖sj‖ ‖sk‖
Note that

ρ =







0 , if sj(t) and sk(t) are orthogonal
±1 , if sj(t) = ±sk(t)
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Properties of Signal Vectors

Euclidean Distance: The Euclidean distance between two signals sj(t) and
sk(t) is

djk =

{

∫ T

0
(sj(t)− sk(t))

2dt

}1/2

=











∫ T

0





N
∑

n=1

sjnfn(t)−
N
∑

m=1

skmfm(t)





2

dt











1/2

=







N
∑

n=1

(sjn − skn)
2







1/2

=
{

‖sj − sk‖2
}1/2

= ‖sj − sk‖
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Example

Consider the earlier example where

s1 = (
√

T/3, 0, 0)

s2 = (
√

T/3,
√

T/3, 0)

s3 = (0,
√

T/3,
√

T/3)

We have E1 = ‖s1‖2 = T/3, E2 = ‖s2‖2 = 2T/3, and E3 = ‖s3‖2 = 2T/3.

The correlation between s2(t) and s3(t) is

ρ23 =
s2 · s3

‖s2‖‖s3‖
=

T/3

2T/3
= 0.5

The Euclidean distance between s1(t) and s3(t) is

d13 = ‖s1 − s3‖ =
√

T/3 + T/3 + T/3 =
√
T
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