EE4061
 Communication Systems

Week 8
Coherent Signal Detection

[^0]
Optimum Coherent Detection

Suppose that we have M signals $s_{1}(t), s_{2}(t), \ldots, s_{M}(t)$ that are defined over the time interval $0 \leq t \leq T$, where T is the baud period or baud interval. The baud rate is $R=1 / T$.

Note that $T_{b}=T / \log _{2} M$ and $R=R_{b} / \log _{2} M$, where $R_{b}=1 / T_{b}$ is the bit rate.
We select one of signals, say $s_{i}(t)$, for transmission over an AWGN channel.

The received signal is

$$
r(t)=s_{i}(t)+n(t)
$$

where $n(t)$ is AWGN with power spectral density $N_{o} / 2$ watts $/ \mathrm{Hz}$.
Problem: By observing $r(t)$ determine which one of the M signals in the set $\left\{s_{1}(t), s_{2}(t), \ldots, s_{M}(t)\right\}$ was (most likely) transmitted.

Repeat this process once every T seconds for each modulated signal that is transmitted.

[^1]
Correlation Detector

Any signal set $\left\{s_{1}(t), s_{2}(t), \ldots, s_{M}(t)\right\}$ can be expressed in terms of a set of orthonormal basis functions $\left\{f_{1}(t), f_{2}(t), \ldots, f_{N}(t)\right\}$ where N is the dimension of the signal space. Recall the Gram-Schmidt orthonormalization procedure.

However, the basis functions do not span the noise space, i.e., the noise waveform $n(t)$ cannot be represented exactly in terms of the N basis functions. We have

$$
r(t)=\sum_{k=1}^{N} r_{i} f_{i}(t)+\hat{n}(t)
$$

where

$$
\begin{aligned}
r_{k} & =\int_{0}^{T} r(t) f_{k}(t) d t \\
& =\int_{0}^{T} s_{m}(t) f_{k}(t) d t+\int_{0}^{T} n(t) f_{k}(t) d t \\
& =s_{m k}+n_{k}
\end{aligned}
$$

Hence, the projection of the received signal $r(t)$ onto the signal space yields the received vector $\mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{N}\right)$.

[^2]
Remainder Process

Note that

$$
r(t)=\sum_{k=1}^{N} r_{k} f_{k}(t)+\hat{n}(t)
$$

where $\hat{n}(t)$ is the remainder process

$$
\hat{n}(t)=n(t)-\sum_{k=1}^{N} n_{k} f_{k}(t)
$$

We will see later that the remainder process $\hat{n}(t)$ is irrelevant when deciding as to which $s_{i}(t)$ was sent.

The vector $\mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{N}\right)$ is said to provide sufficient statistics, meaning that nothing else is required other than the vector \mathbf{r} for the receiver to decide which $s_{i}(t)$ was sent.

[^3]
Correlation Detector

[^4]
Noise Statistics

The noise components n_{k} have mean

$$
\mathrm{E}\left[n_{k}\right]=\int_{0}^{T} \mathrm{E}[n(t)] f_{k}(t) d t=0
$$

and covariance

$$
\begin{aligned}
\mathrm{E}\left[n_{j} n_{k}\right] & =\int_{0}^{T} \int_{0}^{T} \mathrm{E}[n(t) n(s)] f_{j}(t) f_{k}(s) d t d s \\
& =\frac{N_{o}}{2} \int_{0}^{T} \int_{0}^{T} \delta(t-s) f_{j}(t) f_{k}(s) d t d s \\
& =\frac{N_{o}}{2} \int_{0}^{T} f_{j}(t) f_{k}(t) d t \\
& =\frac{N_{o}}{2} \delta_{j k}
\end{aligned}
$$

Therefore, the r_{k} are independent Gaussian random variables with mean $s_{m k}$ and variance $N_{o} / 2$.

[^5]
Joint Conditional Density

Since elements of the vector \mathbf{r} are independent random variables the joint conditional density function of the vector \mathbf{r} has the product form

$$
\begin{aligned}
p\left(\mathbf{r} \mid \mathbf{s}_{\mathbf{m}}\right) & =\prod_{k=1}^{N} p\left(r_{k} \mid s_{m k}\right) \\
& =\prod_{k=1}^{N} \frac{1}{\sqrt{\left.\pi N_{o}\right)}} \exp \left\{-\frac{1}{N_{o}}\left(r_{k}-s_{m k}\right)^{2}\right\} \\
& =\frac{1}{\left(\pi N_{o}\right)^{N / 2}} \exp \left\{-\frac{1}{N_{o}} \sum_{k=1}^{N}\left(r_{k}-s_{m k}\right)^{2}\right\} \\
& =\frac{1}{\left(\pi N_{o}\right)^{N / 2}} \exp \left\{-\frac{1}{N_{o}}\left\|\mathbf{r}-\mathbf{s}_{m}\right\|^{2}\right\}
\end{aligned}
$$

which is a multivariate Gaussian distribution.

Note that we have used the notation

$$
\left\|\mathbf{r}-\mathbf{s}_{m}\right\|^{2}=\sum_{k=1}^{N}\left(r_{k}-s_{m k}\right)^{2}
$$

[^6]
Irrelevance

We have

$$
\begin{aligned}
\mathrm{E}\left[\hat{n}(t) r_{k}\right] & =\mathrm{E}[\hat{n}(t)] s_{m k}+\mathrm{E}\left[\hat{n}(t) n_{k}\right] \\
& =\mathrm{E}\left[\hat{n}(t) n_{k}\right] \\
& =\mathrm{E}\left[\left(n(t)-\sum_{j=1}^{N} n_{j} f_{j}(t)\right) n_{k}\right] \\
& =\int_{0}^{T} \mathrm{E}[n(t) n(\tau)] f_{k}(\tau) d \tau-\sum_{j=1}^{N} \mathrm{E}\left[n_{k} n_{j}\right] f_{j}(t) \\
& =\frac{1}{2} N_{o} f_{k}(t)-\frac{1}{2} N_{o} f_{k}(t)=0
\end{aligned}
$$

Hence, the vector \mathbf{r} is uncorrelated with $\hat{n}(t)$ and, therefore, $\hat{n}(t)$ is irrelevant since it does not contain any information about \mathbf{r}.

This is Wozencraft's irrelevance theorem which is certainly not irrelevant!

[^7]
Matched Filter Receiver

Suppose that we filter the received signal $r(t)$ with a bank of matched filters having the impulse responses

$$
h_{k}(t)=f_{k}(T-t) \quad, \quad 0 \leq t \leq T
$$

and sample the filter outputs at time $t=T$.

The filter outputs are

$$
\begin{aligned}
y_{k}(t) & =\int_{0}^{t} r(\tau) h_{k}(t-\tau) d \tau \\
& =\int_{0}^{t} r(\tau) f_{k}(T-t+\tau) d \tau \\
y_{k} & \equiv y_{k}(T)=\int_{0}^{T} r(\tau) f_{k}(\tau) d \tau
\end{aligned}
$$

Note that $y_{k}=r_{k}$, i.e., the matched filter outputs are identical to the correlator outputs.

[^8]
Matched Filter Receiver

[^9]
Minimum Distance Decisions

With minimum distance decisions, the receiver first calculates the vector \mathbf{r}. The receiver then decides in favour of the signal point \mathbf{s}_{i} that is closest in Euclidean distance or squared Euclidean distance to the received vector \mathbf{r}.

The minimum distance decision rule is

$$
\hat{\mathbf{s}}=\frac{\arg \min }{\mathbf{s}_{i}}\left\|\mathbf{r}-\mathbf{s}_{i}\right\|^{2}
$$

Since, the vector \mathbf{r} has the joint conditional density function

$$
p\left(\mathbf{r} \mid \mathbf{s}_{m}\right)=\frac{1}{\left(\pi N_{o}\right)^{N / 2}} \exp \left\{-\frac{1}{N_{o}}\left\|\mathbf{r}-\mathbf{s}_{m}\right\|^{2}\right\}
$$

the choice of \mathbf{s}_{i} that minimizes $\left\|\mathbf{r}-\mathbf{s}_{i}\right\|^{2}$ also maximizes the likelihood $p\left(\mathbf{r} \mid \mathbf{s}_{m}\right)$. Hence minimum distance decisions are maximum likelihood decisions.

[^10]
[^0]: ${ }^{0}$ ©2012, Georgia Institute of Technology (lect7-1)

[^1]: ${ }^{0}$ ⑳12, Georgia Institute of Technology (lect7_2)

[^2]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect7_3)

[^3]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect7_4)

[^4]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect7_5)

[^5]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect7_6)

[^6]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect7-7)

[^7]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect7_8)

[^8]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect7_9)

[^9]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect7_10)

[^10]: ${ }^{0}$ © 2012, Georgia Institute of Technology (lect7_11)

