EE4601 Communication Systems

Week 9

Binary Modulated Signal Sets

Binary PSK (BPSK)

With BPSK information is transmitted in the carrier phase. Two sinusoids are used having a relative phase different of π radians. That is

$$s_1(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_c t)$$

$$s_2(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_c t + \pi)$$

for $0 \le t \le T$. Note that

$$s_2(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_c t + \pi)$$

$$= \sqrt{\frac{2E}{T}}\left\{\cos(2\pi f_c t)\cos\pi - \sin(2\pi f_c t)\sin\pi\right\}$$

$$= -\sqrt{\frac{2E}{T}}\cos(2\pi f_c t) = -s_1(t)$$

⁰©2011, Georgia Institute of Technology (lect8_2)

Binary PSK (BPSK)

Assuming that $f_cT \gg 1$, the energy in $s_1(t)$ and $s_2(t)$ is

$$\int_0^T s_i^2(t)dt = E$$

The vector representation of binary PSK signals requires only a single basis function because $s_1(t) = -s_2(t)$, i.e., the two signals are linearly dependent.

We have that

$$f_1(t) = \frac{s_1(t)}{\sqrt{E}}$$
$$= \sqrt{\frac{2}{T}}\cos(2\pi f_c t)$$

Then

$$s_1(t) = \sqrt{E} f_1(t)$$

$$s_2(t) = -\sqrt{E} f_1(t)$$

Binary PSK (BPSK)

$$d_{12} = 2\sqrt{E}$$

The minimum distance decision rule is

choose
$$\begin{cases} s_1 & \text{if } r < 0 \\ s_2 & \text{if } r > 0 \end{cases}$$

Assume s_1 is sent such that $r \sim N(s_1, N_0/2)$. The error probability is

$$P_{e} = P_{e|s_{1} \text{ sent}} P(s_{1} \text{ sent}) + P_{e|s_{2} \text{ sent}} P(s_{2} \text{ sent})$$

$$= P_{e|s_{1} \text{ sent}}$$

$$= P(r < 0)$$

$$= Q\left(\sqrt{\frac{2E}{N_{o}}}\right)$$

⁰©2011, Georgia Institute of Technology (lect8_4)

Binary FSK (BFSK)

With binary FSK signals, information is transmitted in the carrier frequency. Two sinusoids are used that have different carrier frequencies.

$$s_1(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_c t)$$

$$s_2(t) = \sqrt{\frac{2E}{T}}\cos(2\pi (f_c + \Delta_f)t)$$

for $0 \le t \le T$. The frequency difference is Δ_f .

Note that $s_1(t)$ and $s_2(t)$ both have energy E.

Depending on the choice of Δ_f , $s_1(t)$ and $s_2(t)$ may or may not be orthogonal.

⁰©2011, Georgia Institute of Technology (lect8_5)

Binary FSK (BFSK)

The vector representation of binary FSK signals requires two basis functions because the two signals $s_1(t)$ and $s_2(t)$ are linearly independent.

We have that

$$f_1(t) = \frac{s_1(t)}{\sqrt{E}}$$
$$= \sqrt{\frac{2}{T}}\cos(2\pi f_c t)$$

Then

$$s_{21} = \int_0^T s_2(t) f_1(t) dt$$
$$= \sqrt{E} \frac{2}{T} \int_0^T \cos(2\pi (f_c + \Delta_f)t) \cos(2\pi f_c t) dt$$

Binary FSK (BFSK)

$$s_{21} = \frac{\sqrt{E}}{T} \int_{0}^{T} \left\{ \cos(2\pi\Delta_{f})t + \cos(2\pi(2f_{c} + \Delta_{f})t) \right\} dt$$

$$= \frac{\sqrt{E}}{T} \int_{0}^{T} \cos(2\pi\Delta_{f})t \ dt$$

$$= \frac{\sqrt{E}}{T} \frac{\sin(2\pi\Delta_{f}t)}{2\pi\Delta_{f}} \Big|_{0}^{T}$$

$$= \sqrt{E} \frac{\sin(2\pi\Delta_{f}T)}{2\pi\Delta_{f}T}$$

$$= \sqrt{E} \operatorname{sinc}(2\Delta_{f}T)$$

Hence,

$$f_2(t) = \frac{\sqrt{\frac{2E}{T}}\cos(2\pi(f_c + \Delta_f)t) - \operatorname{sinc}(2\Delta_f T)\sqrt{\frac{2E}{T}}\cos(2\pi f_c t)}{\sqrt{E(1 - \operatorname{sinc}^2 2\Delta_f T)}}$$

 $^{^0 @ 2011,}$ Georgia Institute of Technology (lect8_7)

Binary Orthogonal FSK

Suppose that $\Delta_f = 1/(2T)$. Then it follows that

$$s_{21} = \sqrt{E} \operatorname{sinc}(2\Delta_f T)$$
$$= 0$$

In this case, $s_1(t)$ and $s_2(t)$ are orthogonal.

Hence,

$$f_2(t) = \sqrt{\frac{2}{T}}\cos(2\pi(f_c + \Delta_f)t)$$

 $^{^0 @ 2011,}$ Georgia Institute of Technology (lect8_8)

Binary Orthogonal FSK

 $^{^0 \}boxed{\odot 2011, \, \text{Georgia Institute of Technology (lect8_9)}}$

Binary Orthogonal FSK

The minimum distance decision rule is

choose
$$\begin{cases} \mathbf{s}_1 & \text{if } \mathbf{r} \text{ is below dashed line} \\ \mathbf{s}_2 & \text{if } \mathbf{r} \text{ is above dashed line} \end{cases}$$

Using the $circular\ symmetric$ property of the noise vector \mathbf{n} , the error probability is

$$P_{e} = P_{e|s_{1} \text{ sent}}$$

$$= Q\left(\frac{\sqrt{E/2}}{\sqrt{N_{o}/2}}\right)$$

$$= Q\left(\sqrt{\frac{E}{N_{o}}}\right)$$

Note that coherent BFSK requires a factor of 2 (3 dB) increase in E/N_o to achieve the same error probability as BPSK.

⁰©2011, Georgia Institute of Technology (lect8_10)