Homework \# 5

Problem 1

The following questions relate to the MOSFET circuit shown. Assume the MOSFET is saturated and has the large signal parameters of $K_{N}{ }^{\prime}=24 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=0.75 \mathrm{~V}$, and $\lambda_{N}=0.01$ V^{-1}.
(a.) What is the dc value of $v_{I N}$?
(b.) What is the largest value of R_{D} for which the MOSFET
is saturated?
(c.) If $R_{D}=10 \mathrm{k} \Omega$, what is the numerical value of the small-signal voltage gain, $v_{\text {out }} / v_{\text {in }}$?
(d.) What is the numerical value of the small-signal input resistance, $R_{i i}$

(e.) What is the numerical value of the small-signal output resistance, $R_{\text {out }}$?

Problem 2

A BJT amplifier is shown. (a.) Find the value of $V_{B B}$ that will give $I_{C}=1 \mathrm{~mA}$. (b.) Assume that $I_{C}=1 \mathrm{~mA}$ and find the small signal input resistance, $R_{\text {in }}$, output resistance, $R_{\text {out }}$, and the midband voltage gain, $A_{\nu}(0)$. (c.) If $C_{\pi}=10 \mathrm{pF}$ and $C_{\mu}=1 \mathrm{pF}$, use Miller's approximation to find the -3 dB frequency of this amplifier in Hertz.

Problem 3

Find the -3 dB frequency of the circuit shown in Hz . The values of the hybrid-pi model are r_{b} $=100 \Omega, r_{\pi}=10 \mathrm{k} \Omega, g_{m}=10 \mathrm{mS}, r_{o}=100 \mathrm{k} \Omega, C_{\mu}=1 \mathrm{pF}$, and $f_{T}=100 \mathrm{MHz}$. (Hint: Use the Miller approximation on C_{μ} and ignore the output pole.)

Homework \# 5 - Solutions

Problem 1

The following questions relate to the MOSFET circuit shown. Assume the MOSFET is saturated and has the large signal parameters of $K_{N}=24 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=0.75 \mathrm{~V}$, and $\lambda_{N}=0.01$ V^{-1}.
(a.) What is the dc value of $v_{I N}$?
(b.) What is the largest value of R_{D} for which the MOSFET is saturated?
(c.) If $R_{D}=10 \mathrm{k} \Omega$, what is the numerical value of the small-signal voltage gain, $v_{\text {out }} / v_{\text {in }}$?
(d.) What is the numerical value of the small-signal input resistance, $R_{i i}$

(e.) What is the numerical value of the small-signal output resistance, $R_{\text {out }}$?

Solution:

(a.) $V_{I N}=-V_{G S}=-\sqrt{\frac{2 I_{D}}{K^{\prime}(W / L)}}-V_{T}=-0.913-0.75=-1.663 \mathrm{~V} \rightarrow V_{I N}=-1.663 \mathrm{~V}$
(b.) Remember that the drain can be a value of V_{T} below the gate when the transistor is on the edge of saturation.
$\therefore R_{D}=\frac{2.5-(-0.75)}{100 \mu \mathrm{~A}}=32 \mathrm{k} \Omega \rightarrow \quad R_{D} \leq 32 \mathrm{k} \Omega$
(c.) Small-signal model:

Noting that $v_{g s}=-v_{i n}$, we can sum the currents at the output node a:

$$
\begin{aligned}
& g_{m} v_{\text {in }}+g_{d s}\left(v_{\text {in }}{ }^{-v_{\text {out }}}\right)=G_{D^{v_{\text {out }}}} \quad \rightarrow \quad \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m}+g_{d s}}{G_{D}+g_{d s}} \\
& g_{m}=\sqrt{2 \cdot 100 \cdot 24 \cdot 10}=219 \mu \mathrm{~S}, g_{d s}=100 \cdot 0.01=1 \mu \mathrm{~S}, \text { and } G_{D}=10 \mathrm{C} \\
& \therefore \quad \frac{v_{\text {out }}}{v_{\text {in }}}=+2.18 \mathrm{~V} / \mathrm{V} \quad \frac{v_{\text {out }}}{v_{\text {in }}}=+2.18 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

(d.) Summing the currents at the input gives $i_{i n}=g_{m} v_{i n}+g_{d s}\left(v_{\text {in }}{ }^{-} v_{\text {out }}\right)$

Noting that $v_{\text {out }}=i_{\text {in }} R_{D}$ gives

$$
i_{i n}\left(1+g_{d s} R_{D}\right)=\left(g_{m}+g_{d s}\right) v_{\text {in }} \rightarrow \quad \frac{v_{\text {in }}}{i_{\text {in }}}=\frac{1+g_{d s} R_{D}}{g_{m}+g_{d s}}=\frac{1+0.1}{219+1} \times 10^{6}=4591 \Omega
$$

$\therefore \quad R_{\text {in }}=4591 \Omega$
(e.) The output resistance is simplified if we recall that $v_{i n}=0$ which means that $v_{g s}=0$.

Therefore the output resistance is simply

$$
R_{\text {out }}=\frac{1}{g_{d s}+G_{D}}=\frac{10^{6}}{1+100}=9.9 \mathrm{k} \Omega
$$

Problem 2

A BJT amplifier is shown. (a.) Find the value of $V_{B B}$ that will give $I_{C}=1 \mathrm{~mA}$. (b.) Assume that $I_{C}=1 \mathrm{~mA}$ and find the small signal input resistance, $R_{i n}$, output resistance, $R_{\text {out }}$, and the midband voltage gain, $A_{\nu}(0)$. (c.) If $C_{\pi}=10 \mathrm{pF}$ and $C_{\mu}=1 \mathrm{pF}$, use Miller's approximation to find the -3 dB frequency of this amplifier is

Solution:

(a.) $\quad V_{B B}=\frac{R_{B} I_{C}}{\beta}+V_{t} \ln \left(\frac{I_{C}}{I_{S}}\right)=\frac{100 \cdot 1}{100}+0.656=1.656 \mathrm{~V}$

$$
\rightarrow \quad V_{B B}=1.656 \mathrm{~V}
$$

(b.) Small-signal model:
$g_{m}=\frac{I_{C}}{V_{t}}=\frac{1 \mathrm{~mA}}{25.9 \mathrm{mV}}=38.6 \mathrm{mS}$,
$r_{\pi}=\frac{1+\beta}{g_{m}}=\frac{101}{0.0386}=2.616 \mathrm{k} \Omega$,
$r_{O}=\frac{V_{A}}{I_{C}}=\frac{100 \mathrm{~V}}{1 \mathrm{~mA}}=100 \mathrm{k} \Omega$

First: $\quad R_{\text {in }}=R_{B}+r_{\pi}=102.62 \mathrm{k} \Omega$ and $R_{\text {out }}=r_{o}\left\|R_{C}=100 \mathrm{k} \Omega\right\| 2.5 \mathrm{k} \Omega=2.44 \mathrm{k} \Omega$
Next: $A_{\nu}(0)=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-g_{m} r^{R} R_{\text {out }}}{r_{\pi}+R_{B}}=\frac{-0.0386\left(2.44 \times 10^{3}\right) 2.616}{102.616}=-2.4 \mathrm{~V} / \mathrm{V} \rightarrow A_{\nu}(0)=-2.4 \mathrm{~V} / \mathrm{V}$
(c.) With the capacitors included in the model,

$$
\begin{aligned}
\omega_{-3 \mathrm{~dB}}= & \frac{1}{\left(R_{B} \| r_{\pi}\right)\left[C_{\pi}+C_{\mu}\left(1+g_{m} R_{\text {out }}\right)\right]}=\frac{10^{12}}{\left(2.549 \times 10^{3}\right)[10+1(1+93.18)]} \\
& =3.766 \times 10^{6} \mathrm{rads} / \mathrm{sec} . \rightarrow \quad f_{-3 \mathrm{~dB}}=0.599 \mathrm{MHz}
\end{aligned}
$$

Problem 3

Find the -3 dB frequency of the circuit shown in Hz . The values of the hybrid-pi model are r_{b} $=100 \Omega, r_{\pi}=10 \mathrm{k} \Omega, g_{m}=10 \mathrm{mS}, r_{o}=100 \mathrm{k} \Omega, C_{\mu}=1 \mathrm{pF}$, and $f_{T}=100 \mathrm{MHz}$. (Hint: Use the Miller approximation on C_{μ} and ignore the output pole.)

Solution:

Method 1 -Miller Approx.: $C_{M}=\left[1+10^{-2}(100 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega)\right] 1 \mathrm{pF}=(1+90.9) 1 \mathrm{pF}=91.9 \mathrm{pf}$
Thus,

$$
\begin{aligned}
& \omega_{-3 \mathrm{~dB}} \approx \frac{1}{\left(r_{b} \| r_{\pi}\right)\left(C_{\pi}+C_{M}\right)}=\frac{1}{99 \Omega \cdot 106.8 \mathrm{pF}}=94.6 \times 10^{6} \mathrm{rads} / \mathrm{sec} . \\
& \therefore \quad f_{-3 \mathrm{~dB}} \approx \frac{94.6 \times 10^{6}}{2 \pi}=15.1 \mathrm{MHz}
\end{aligned}
$$

Method 2 - Classical Approach (two-node problem):
$V_{\text {out }}\left(g_{o}+G_{L}+s C_{\mu}\right)=\left(s C_{\mu}^{-} g_{m}\right) V_{\text {out }} \quad \& \quad g_{b} V_{\text {in }}=\left(g_{\pi}+g_{b}+s C_{\pi}+s C_{\mu}\right) V_{\pi}-s C_{\mu} V_{\text {out }}$
Solving: $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{g_{b}\left(s C_{\mu}-g_{m}\right)}{s^{2} C_{\mu} C_{\pi}+s\left[\left(C_{\mu}+C_{\pi}\right)\left(g_{o}+G_{L}\right)+\left(g_{\pi}+g_{b}\right) C_{\mu}+g_{m} C_{\mu}\right]+\left(g_{\pi}+g_{b}\right)\left(g_{o}+G_{L}\right)}$
\& denominator is: $\quad D(s)=14.9 \times 10^{-24}\left(s^{2}+14.66 \times 10^{8} s+7.4564 \times 10^{16}\right)$, which has two roots.

The smallest is $-527.6 \times 10^{6} \mathrm{rads} / \mathrm{sec}$ which gives $f_{-3 \mathrm{~dB}}=\frac{527 \mathrm{x} 10^{6}}{2 \pi}=8.4 \mathrm{MHz}$

